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Fig. 3.  Evolution of ppc-1E1 in Caryophyllales. The topology was inferred on nucleotide sequences, but branch lengths were estimated based on amino 
acid sequences. The branch lengths inferred on nucleotide sequences, together with all species names and support values, are available in Fig. S1. 
Groups of genes encoding a Ser780 are highlighted by red branches. Branches where some sites underwent an excess of non-synonymous mutations 
according to the best model are thicker. Putative C4 forms are delimited in green and putative CAM forms in blue. These were identified based either 
on transcript abundances in specific conditions, on the literature, or on an excess of amino acid changes in C4/CAM species. Genes of C4 or CAM 
taxa that represent putative non-photosynthetic duplicates are delimited in grey, those of C3 taxa in white, and those of C3–C4 taxa in yellow. Families 
outside Portulacineae and gene lineages for Portulacineae are indicated on the left: N, Nyctaginaceae; Mollug, Molluginaceae; Amar, Amaranthaceae; 
Aiz, Aizoaceae. Subclades of interest are indicated on the right: P, Portulaca; C, cacti. The full phylogenetic tree is available in Fig. S3. The scale bar 
represents expected substitutions per site. (This figure is available in colour at JXB online.)
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at JXB online). The transcript abundances suggest that a C4 
cycle is present in both well-watered and drought conditions, 
but it is complemented by a CAM cycle in drought condi-
tions, as indicated previously (Mazen, 2000).

Detailed analysis of P. oleracea PEPC genes

The incorporation of contigs from the P. oleracea samples 
into the densely sampled Caryophyllales dataset allowed us to 
estimate the transcript abundance of each ppc-1E1 gene line-
age (Table 1). In addition to ppc-1E2 and ppc-2, four distinct 
ppc-1E1 genes were isolated from the transcriptomes of P. 
oleracea, only one of which was also isolated from genomic 
DNA (ppc-1E1b). One of these four genes was clearly nested 
within ppc-1E1c and two in ppc-1E1a (Supplementary Fig. 
S1, available at JXB online). The phylogenetic relationships 
suggest a recent duplication of ppc-1E1a in Portulaca and one 
of the duplicates was named ppc-1E1a’.

The genes ppc-1, ppc-2, ppc-1E1a, and ppc-1E1b were pre-
sent at similarly low abundances in all samples (Table 1). By 
contrast, ppc-1E1a’ was present at very high transcript abun-
dances during the day in the well-watered samples (Table 1). 
This pattern is consistent with a function in the C4 pathway, 
which is moreover supported by the Ser780 encoded by the 
gene. The abundance of ppc-1E1a’ during the day decreased 
in one of the individuals that were watered less frequently 
and its abundance at night decreased in both individuals 
(Table  1). The gene ppc-1E1c was present at extremely low 
transcript abundances in the well-watered samples during 
the day. However, its abundance increased at night, and the 
nocturnal abundance was considerably higher in infrequently 
watered than in well-watered plants (Table 1). High nocturnal 
transcript abundance triggered by reduced water availability 
supports an involvement of the encoded enzyme in the CAM 
pathway of P. oleracea. This gene also encodes a Ser780.

Distribution of ppc-1E1 genes in other Portulaca 
species and evidence of adaptive evolution

Using the 1KP transcriptome data, sequences corresponding 
to the genes ppc-1E1a and ppc-1E1c were retrieved from the 
Oleracea clade, while sequences corresponding to ppc-1E1b were 
retrieved from both Oleracea and Pilosa clades (Supplementary 
Fig. S1, available at JXB online). The RNA for this project was 

isolated during the day and putative CAM-specific genes would 
likely be missed. The putative C4 gene ppc-1E1a’ was retrieved 
from the four Portulaca clades. One sequence attributed to P. 
suffruticosa was nested within ppc-1E1a’ of the Pilosa clade 
(Fig. 4 and Supplementary Fig. S1, available at JXB online), 
which might indicate a biologically relevant phenomenon (e.g. 
hybridization) or a methodological problem (e.g. cross-contam-
ination). Since these sequences were retrieved from leaf RNA 
isolated during the day, the presence of transcripts correspond-
ing to ppc-1E1a’ is compatible with the hypothesis that this gene 
is involved in C4 photosynthesis of these different species.

The branch lengths estimated from amino acid sequences 
strongly vary among clades (Fig. 3 and Supplementary Fig. S3, 
available at JXB online). Since the variation is more pronounced 
than with nucleotide sequences (Supplementary Figs S1 and S2, 
available at JXB online), it indicates an excess of non-synony-
mous mutations. In Molluginaceae and Amaranthaceae, clear 
increases in the rate of amino acid substitutions occurred on 
branches leading to genes encoding putative C4-specific enzymes. 
In Aizoaceae, a similar acceleration is visible on the branch 
leading to the putative C4 gene of Trianthema, but also to the 
genes of the CAM plant Mesembryanthemum crystallinum. In 
addition, the branch leading to the C4 Nyctaginaceae Boerhavia 
underwent many amino acid changes (Fig. 3), which is sugges-
tive of functional divergence, potentially as an adaptation to the 
C4 context. These ppc-1E1 genes likely encode proteins involved 
in CCMs, but do not encode the Ser780. This indicates that 
changes happened in different parts of the coding sequences. 
The monophyletic group composed of Portulacineae ppc-1E1c, 
ppc-1E1d, and ppc-1E1e is also characterized by increased rates 
of amino acid substitutions, with further increases in some 
branches, such as those leading to ppc-1E1c from Portulaca, but 
also the cacti (Fig. 3 and Supplementary Fig. S3, available at 
JXB online). Within Portulacineae ppc-1E1a’, long branches 
lead to the putative C4-specific genes of Portulaca. However, 
most of the amino acid substitutions occurred after the diver-
gence of the four clades (sensu Ocampo and Columbus, 2012) 
and comparatively few happened on the branch leading to the 
C3–C4 P. cryptopetala (Fig. 3).

The action of adaptive evolution on some branches of the 
phylogeny is supported by codon models. While the model 
assuming positive selection on some sites but all branches of 
Caryophyllales ppc-1E1 was not better than the null model, 
assuming increased rates of non-synonymous changes on 

Table 1.  Transcript abundances in rpm of PEPC-encoding genes in Portulaca oleracea grown in different conditions

Time Day Night Day Night

Condition Watered frequently Watered occasionally

Individual 1 2 1 2 3 4 3 4

ppc-2 13 14 6 1 5 30 7 17
ppc-1E2 44 41 40 29 14 10 5 14
ppc-1E1a 131 139 157 192 167 196 185 173
ppc-1E1b 0 1 0 7 6 18 0 0
ppc-1E1c 3 0 820 1180 277 338 7602 6823
pp c-1E1a’ 9916 4697 6710 6052 7339 1868 1421 869
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some sites but some branches only led to a very significant 
increase in likelihood (Table  2). While all the tested sets of 
foreground branches led to a significant increase of likelihood, 
the model assuming increased rates of non-synonymous muta-
tions in the whole of Portulacineae ppc-1E1c, ppc-1E1d, and 
ppc-1E1e gene lineages in addition to C4 and CAM clades out-
side of Portulacineae produced the best AIC (Table 2). In this 
model, 16.8% of sites were estimated to undergo more non-
synonymous mutations in the selected foreground branches, 
although the optimized dN/dS ratio was not different from 1.

In the phylogenetic tree inferred from all nucleotides, 
P. cryptopetala ppc-1E1a’ is sister to all other Portulaca 
(Supplementary Fig. S1, available at JXB online), but this spe-
cies is sister to the Oleracea clade in the tree inferred on third 
positions of codons (Fig. 4), as expected based on other mark-
ers (Ocampo and Columbus, 2012; Ocampo et al., 2013). The 
model assuming adaptive evolution in the entire Portulaca ppc-
1E1a/ppc-1E1a’ clade was not different from the model without 

adaptive selection. Similarly, assuming adaptive evolution at 
the base of ppc-1E1a’ did not improve the likelihood. However, 
assuming adaptive evolution at the base of each C4 clade of 
ppc-1E1a’ significantly improved the model (χ2=38.2, df=2, P 
<0.00001), which indicates that 10.7% of the sites have evolved 
under adaptive evolution on these branches, with a dN/dS ratio 
of 1.35. The model assuming adaptive evolution on branches 
leading to both C4 and C3–C4 clades was also better than the 
null model, but not as good as the model without adaptive evo-
lution on the C3–C4 branch (difference of AIC >18).

Discussion

Increased rates of amino acid changes in both C4 and 
CAM origins

The evolution of genes encoding PEPC in the Caryophyllales 
is characterized by increased rates of amino acid substitutions 
and the recurrence of several amino acid changes previously 
detected in C4 monocots (e.g. E572Q, H665N, and A780S; 
Christin et al., 2007; Besnard et al., 2009). These increased 
rates of amino acid change are not limited to C4 taxa, but 
are also observed in CAM lineages, including Aizoaceae and 
Portulacineae species (Fig.  3), and the excess of non-syn-
onymous mutations on these branches was confirmed with 
codon models (Table 2). C4- and CAM-specific PEPC differ 
in the timing of their activity, but the catalytic challenges they 
face in the two cycles are similar, because in both cases the 
concentrations of both substrates and products are greatly 
increased. The evolution of both C4- and CAM-specific 
PEPC consequently required adaptive mutations, some of 
which are shared among multiple origins, while several are 
probably specific to one or a few clades and might depend 
on the other amino acid mutations undergone by the coding 
sequence of the gene before its co-option.

In Portulacineae, the ppc-1E1 gene lineage is present in 
five copies, which appeared through several rounds of gene 

Fig. 4.  Evolution of C4-specific PEPC genes in Portulaca. This phylogeny of Portulaca ppc-1E1a/ppc-1E1a’ was inferred from third positions of codons. 
Bayesian support values are indicated near branches and clades are delimited on the right. Putative C4 forms are highlighted in green and putative C3–C4 
forms in yellow. Thick branches represent inferred episodes of adaptive evolution. The scale bar represents expected substitutions per site. (This figure is 
available in colour at JXB online.)

Table 2.  Codon models for ppc-1E1 of Caryophyllales

Model Foreground  
branches

Number of  
parameters

Log- 
likelihood

AIC  
score

M1aa – 399 –49702 10202
M2ab – 401 –49702 10206
Ac (a) each C4 and  

CAM groupsd

401 –49588 99978

Ac (b) a + ppc-1E1c 401 –49523 99848
Ac (c) b + ppc-1E1d +  

ppc-1E1e

401 –49383 99568

Ac (d) c + ppc-1E1b 401 –49416 99634
Ac (e) d + ppc-1E1a 401 –49556 99914

a Site model without adaptive evolution.
b Site model with adaptive evolution.
c Branch-site model with adaptive evolution.
d Except for Portulacineae other than Portulaca.
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duplications (Fig.  3 and Supplementary Fig. S1, available at 
JXB online). The three most recent copies, namely ppc-1E1c, 
ppc-1E1d, and ppc-1E1e, are all characterized by increased 
rates of amino acid substitutions (Fig.  3 and Table  2). The 
Portulacineae encompass species with different degrees of CAM 
metabolism (Guralnick and Jackson, 2001; Nyffeler et al., 2008). 
The high number of ppc-1E1 copies could have promoted neo-
functionalization of the genes by relaxing selective constraints, 
facilitating the diversification of photosynthetic types in this 
group. A gradual upregulation of the CCM over time would 
have triggered successive periods of adaptive genetic changes in 
response to modifications of the catalytic environment, explain-
ing the high rates of amino acid substitutions sustained in the 
entire clade (Fig. 3). For instance, the accumulation of muta-
tions on the branches leading to ppc-1E1c of CAM-constitutive 
cacti (Cactoideae and Opuntioideae; Fig. 3) could be linked to 
the evolution of a more efficient CAM pathway in these taxa. 
This contrasts with the evolution of C4-specific PEPC where 
adaptive changes are concentrated at the base of each C4 group 
(Fig. 3; Christin et al., 2007; Besnard et al., 2009), and might 
indicate that the optimization of PEPC for the CAM function 
is spread over a longer time period.

C4 origins in Portulaca within a CAM-like context

The putative gene encoding the CAM-specific PEPC in 
Portulaca belongs to the ppc-1E1c gene lineage (Fig. 3). This 
gene lineage is characterized by increased rates of amino acid 
substitutions in other CAM taxa, such as cacti. This suggests 
that members of this ppc-1E1c gene lineage may have been 
already involved in some type of CAM metabolism before 
the divergence of Portulaca and cacti. On the other hand, 
the putative C4-specific genes of Portulaca belong to the ppc-
1E1a gene lineage, which is duplicated in these taxa. One of 
the duplicates was likely co-opted for C4 photosynthesis after 
the gene duplication. Other members of the ppc-1E1a gene 
lineage, including the second duplicate of Portulaca, under-
went mutations that generated amino acid substitutions at 
the same rate as genes from C3 species (Fig. 3). Codon models 
confirmed that adaptive non-synonymous mutations did not 
occur on these genes, but were restricted to some members of 
the ppc-1E1a′ duplicate, which is specific to Portulaca. The 
evolution of C4-specific genes in Portulaca likely co-opted 
a non-CCM gene through numerous changes in the coding 
sequences. Therefore, the distribution of high rates of non-
synonymous substitutions indicates that the evolution of 
C4-specific PEPC occurred after the divergence of Portulaca 
from other Portulacineae while the CAM-specific properties 
of the gene used by Portulaca were inherited from the com-
mon ancestor of Portulaca and the cacti.

Because Portulaca species are nested within a predomi-
nantly CAM lineage (Guralnick and Jackson, 2001; Nyfeller 
et al., 2008), it has been previously hypothesized that the C4 
pathway of these taxa evolved from an ancestral CAM type 
(Sage, 2002). This hypothesis is corroborated by the evolution-
ary history of PEPC genes, with the CAM-specific gene of 
Portulaca being similar to CAM forms of other species, such 
as cacti (Fig. 3), while the C4-specific PEPC has been recruited 

from non-photosynthetic forms. For the other enzymes of 
the CAM and C4 pathways, Portulaca uses the same genes in 
both conditions (Supplementary Table S6, available at JXB 
online). This indicates that, for many enzymes of the CCM, 
the evolution of one CCM from the other does not require the 
co-option of new genes. However, since the timing of activity 
differs between the CCMs, modifications in the regulation of 
the genes are probably still required. For many of these genes, 
this may be possible because they are involved with both the 
C3 pathway and the decarboxylation phase of the C4 pathway 
that operates during the day in both the CAM and C4 path-
ways. In the case of PEPC, however, co-option of the CAM-
specific gene into the C4 cycle might have been hampered by 
the distinct regulatory cascades controlling the transcription 
and translation of the CAM form at night and the C4 form 
during the day (Jiao and Chollet, 1991; Nimmo, 2003), lead-
ing to the recruitment of a distinct gene (namely ppc-1E1a’).

C4 evolution within Portulaca

Portulaca species do not form a homogeneous C4 group, but 
include a C3–C4 species and several C4 clades that differ in their 
C4-associated anatomical types and decarboxylating enzymes 
used for the C4 cycle (Voznesenskaya et  al., 2010; Ocampo 
et al., 2013). In phylogenetic trees of Portulaca species, the 
C3–C4 taxon is nested within otherwise C4 lineages (Ocampo 
and Columbus, 2012), which might be interpreted as evidence 
for a C4 to C3–C4 reversion (Ocampo et al., 2013). However, 
evolutionary transitions between photosynthetic types are 
difficult to reconstruct based on species relationships, and C4-
related phenotypic and genetic variation can help differenti-
ate alternative scenarios (Christin et al., 2010; Hancock and 
Edwards, 2014). In the case of Portulaca, the PEPC gene of 
the C3–C4 P. cryptopetala is nested within those of different 
C4 clades (Fig. 4). If  PEPC had been optimized once for a C4 
function at the base of Portulaca, this would have occurred 
through adaptive evolution on the branch sustaining the 
whole clade. Such a scenario is ruled out, however, by mod-
elling of codon transitions, which strongly favour a model 
with adaptive evolution restricted to the branches at the base 
of each of the three C4 clades (Fig. 4). This shows that the 
putative C4-specific PEPC of the three C4 clades included in 
this study underwent adaptive amino acid changes after their 
divergence, and after their separation from the lineage of P. 
cryptopetala. For instance, the Ser780 is restricted to genes 
from the Oleracea clade, while orthologous genes from mem-
bers of the Pilosa clade underwent other amino acid substitu-
tions that are shared with C4 monocots (e.g. A531P, S761A; 
Christin et al., 2007). These results show that the optimiza-
tion of PEPC for a function in C4 photosynthesis occurred 
independently in each C4 clade, and refutes a C4 to C3–C4 
reversal in P. cryptopetala.

In addition to independent optimizations of PEPC genes 
for C4 photosynthesis, variation exists in the C4-associated 
anatomy and biochemistry among C4 clades of Portulaca 
(Voznesenskaya et al., 2010; Ocampo et al., 2013). Based on 
these observations and our results, the most likely scenario 
is the addition of a C3–C4 suite of traits over an ancestral 
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CAM-like type in the common ancestor of Portulaca. This 
C3–C4 type might have been co-opted several times indepen-
dently for the evolution of a more efficient C4 trait, as sug-
gested for Molluginaceae (Christin et  al., 2011). A  gradual 
increase of PEPC activity during the day might then have 
occurred concomitantly with the development of a more C4-
like anatomy, characterized by a high bundle sheath to meso-
phyll ratio. One way to achieve this state is through high vein 
densities. Some members of Portulaca belong to a handful 
of lineages in the Portulacineae to have evolved high vein 
densities via the rearrangement of leaf vasculature into a 
three-dimensional configuration (Voznesenskaya et al., 2010; 
Ocampo et  al., 2013; Ogburn and Edwards, 2013). While 
most of these vein rearrangements were associated with large 
increases in succulence, in Portulaca it may have allowed the 
acquisition of an optimized C4 CCM.

Conclusions

Caryophyllales is a hotspot of photosynthetic transitions, 
with at least 23 C4 and multiple CAM origins. Of three PEPC 
gene lineages present in eudicots (ppc-1E1, ppc-1E2, and ppc-
2; Fig. 1), only ppc-1E1 was recurrently recruited into the C4 
pathway, suggesting that this gene lineage was more suitable 
for a C4 function (Christin et al., 2013a). The evidence pro-
vided here also supports recruitment of the same gene lin-
eage into CAM metabolism, which suggests that the same 
capacitated genes present in the common C3 ancestor were 
co-opted by the numerous CCM origins of Caryophyllales. 
The evolvability of one CCM compared to the other might 
depend on the ecology and leaf anatomy of the C3 ances-
tor of each lineage (Sage, 2002; Edwards and Ogburn, 2012; 
Edwards and Donoghue, 2013). However, in some cases, evo-
lutionary bridges between the two photosynthetic types exist, 
as illustrated by Portulaca. This shows that while ancestral 
conditions could influence the evolutionary trajectories of 
the descendants, the determinism is not perfect and one pho-
tosynthetic type can be co-opted to evolve the other.

Supplementary material

Supplementary data are available at JXB online.
Figure S1. Phylogenetic relationships among ppc-1 genes. 

This phylogenetic tree was obtained through Bayesian infer-
ence on nucleotide sequences. Names of taxonomic groups and 
gene lineages are indicated on the right. Branches in lineages 
presenting a Ser780 are highlighted in red. Bayesian support 
values are indicated near branches. Asterisks indicate putative 
pseudogenes with one or several stop codons in the coding 
sequence. Black circles indicate sequences that were isolated 
from cacti cDNA. (A) Complete phylogenetic tree; (B) ppc-
1E2 of Caryophyllales; (C, D) ppc-1E1 of Caryophyllales.

Figure S2. Phylogenetic relationships among ppc-2 genes. 
This phylogenetic tree was obtained through Bayesian infer-
ence on nucleotide sequences. Names of taxonomic groups 
are indicated on the right. Bayesian support values are indi-
cated near branches.

Figure S3. Amino acid changes on genes encoding PEPC. 
The topology was inferred on nucleotide sequences, but branch 
lengths were estimated based on amino acid sequences. The 
branch lengths inferred on nucleotide sequences, together 
with all species names and support values, are available in 
Figs S1 and S2. The names of the main groups are indicated 
on the right. Groups of genes containing a Ser780 are high-
lighted by red branches. The asterisk highlights a pseudogene 
with multiple stop codons.

Table S1. Sample of Caryophyllales (excluding 
Portulacineae) used for analyses of PEPC-encoding genes.

Table S2. List of Portulacineae genes encoding PEPC 
analysed.

Table S3. Additional primers used for PCR amplification 
of Caryophyllales genes encoding PEPC.

Table S4. Water treatment of Portulaca oleracea plants.
Table S5. Sequencing and mapping statistics.
Table S6. Expression levels in rpm of C4-related genes in 

day and night samples of Portulaca oleracea plants grown in 
different conditions.
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