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Plant functional traits are viewed as key to predicting important
ecosystem and community properties across resource gradients
within and among biogeographic regions. Vegetation dynamics and
ecosystem processes, such as aboveground net primary productivity
(ANPP), are increasingly being modeled as a function of the quanti-
tative traits of species, which are used as proxies for photosynthetic
rates and nutrient and water-use efficiency. These approaches rely on
an assumption that a certain trait value consistently confers a specific
function or response under given environmental conditions. Here, we
provide a critical test of this idea and evaluate whether the functional
traits that drive the well-known relationship between precipitation
andANPP differ between systemswith distinct biogeographic histories
and species assemblages. Specifically, we compared grasslands span-
ning a broad precipitation gradient (∼200–1,000mm/y) in North Amer-
ica and South Africa that differ in the relative representation and
abundance of grass phylogenetic lineages. We found no significant
difference between the regions in the positive relationship between
annual precipitation and ANPP, yet the trait values underlying this
relationship differed dramatically. Our results challenge the trait-based
approach to predicting ecosystem function by demonstrating that dif-
ferent combinations of functional traits can act to maximize ANPP in a
given environmental setting. Further, we show the importance of in-
corporating biogeographic and phylogenetic history in predicting com-
munity and ecosystem properties using traits.
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Net primary productivity (NPP), or the biomass produced by
the conversion of CO2 via photosynthesis minus that lost to

respiration, is a fundamental link between the atmosphere and the
biosphere. Understanding and predicting the drivers of terrestrial
NPP is of the utmost importance, especially for grasslands, which
cover more than 40% of terrestrial land surface, constitute up-
wards of 30% of terrestrial gross primary productivity (1, 2), and
are responsible for important ecosystem services such as carbon
sequestration and forage production. Precipitation is the primary
driver of variation in aboveground NPP (ANPP) in grasslands
across broad spatial scales (3–6), and a consistent relationship has
been observed between ANPP and precipitation across biogeo-
graphic regions (7). However, our understanding of the factors
that underlie this emergent pattern remain limited.
Recently, ecosystem processes, including ANPP, have been

modeled as a function of the quantitative traits of organisms that
reflect adaptations to environmental variation, and are often proxies
for photosynthetic rates, and nutrient and water-use efficiency
(8–11). Although these approaches are promising, they rely on the
assumption that a certain trait value confers a specific function or
response in a given environment, regardless of differences among
species in other traits or interactions among traits. Furthermore,
these “trait-based” approaches assume robust trait–environment
and trait–ecosystem function associations across broad spatial
scales and/or biogeographic regions (12, 13). Here, we test these

assumptions by measuring stand-level ANPP and functional and
phylogenetic turnover of the grass community across broad pre-
cipitation gradients in grassland ecosystems of South Africa (SA)
and North America (NA). These two regions differ dramatically in
their geological, evolutionary, and biogeographic histories (14,
15), which has resulted in significant differences in the represen-
tation of different grass species and major lineages (Fig. 1 and Fig.
S1). Despite these differences, these regions harbor grasslands
that span a similar rainfall gradient and are dominated by grasses
that use the C4 photosynthetic pathway, making them ideal for
determining whether functional traits map similarly to environ-
mental conditions and ecosystem function in disparate regions
(Table S1 and Fig. S2).
Ten grassland sites were selected on each continent, spanning a

mean annual precipitation gradient of ∼200–1,000 mm (Fig. 1).
All sites were ungrazed at the time of sampling and had no history
of overgrazing. Twenty plots at each site were sampled for grass
community composition and ANPP, and functional traits associ-
ated with relative growth rate and nutrient and water use strate-
gies were quantified for the common grass species at each site.
Whole community ANPP was collected at 17 of the 20 sites, be-
cause sampling was limited at three sites due to environmen-
tal constraints during collection years. Voucher specimens of each
species were collected for DNA sequencing and phylogenetic
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inference (Methods). We used this dataset to test whether the
relationship between traits and environment (precipitation) is
consistent across the two regions, to determine which traits best
predict ANPP, and to assess whether these trait–environment and
trait–function relationships can be explained by the representa-
tion, diversity, and/or ecological dominance of grass lineages
within each region.
Because we focused on the grass component of the plant com-

munity, we first tested whether grass production largely accounted
for ANPP in our communities and was a strong predictor of total
ANPP. In NA and SA, we found that grasses constitute an average
of 74% (SD = 22) and 85% (SD = 13) of total ANPP, respectively.
Furthermore, grass ANPP predicted 91% of the plot-level varia-
tion in total ANPP in NA, and 97% in SA (Fig. S3).
Whereas multiple environmental variables were measured

(Table S1 and Fig. S2), annual precipitation in the current year
was the main variable used as a predictor of variation in ANPP
across sites, because it is widely recognized to be an important
driver of variation in productivity in grassland ecosystems (4–7).
The current year’s annual precipitation explained most of the
variation in ANPP at both sites (98% and 83% in NA and SA,
respectively; Fig. 2A), and we found no significant difference in the
slope (t13 = −0.672, P = 0.514) or intercept (t13 = −0.500, P = 0.625)
of the relationship in NA versus SA grasslands. When a single model
was fit to the combined data from both NA and SA, the slope of the
overall relationship between the current year’s precipitation and
ANPP was estimated to be 0.69 [95% CI (0.599, 0.786); Fig. 2B],
which is similar to estimates from previous studies (4–7).
Despite a highly similar relationship between annual precipitation

and ANPP, the regions differed in their phylogenetic and functional
representation across the precipitation gradients. SA grasslands were
more diverse with a total of 62 grass species identified across all sites,
whereas only 35 were found in NA sites (Fig. 1), perhaps largely
reflecting differences in biogeographic history, the evolutionary
history of large herbivores, and recent glaciation in NA (14,
15). Although there was overlap in the representation of major

grass clades across the regions, they differed significantly in their
relative abundance across the precipitation gradients (Fig. 1).
Andropogoneae and Cynodonteae were responsible for the bulk
of the grass abundance (and thus productivity) in the mesic and
xeric sites of NA, respectively. In contrast, SA grassland sites
exhibited higher phylogenetic diversity with multiple clades pre-
sent in high abundance across the precipitation gradient. Aristi-
doideae and Eragrostideae were most abundant in the more xeric
sites in SA, whereas Paniceae, Andropogoneae, and Tristachyi-
deae were abundant in more mesic sites (Fig. 1). We also found
significant phylogenetic lineage turnover along the precipitation gra-
dients (Table S2; NA: r = 0.539, P = 0.001; SA: r = 0.398, P = 0.001).
Although this general pattern of phylogenetic turnover across climatic
gradients among major C4 lineages has been observed in other re-
gions as well (16–18), our study shows how phylogenetic turnover
differs between grasslands with broadly divergent evolutionary and
biogeographic histories. These results underscore the diversity of
climatic tolerances that are found within a single photosynthetic
type (i.e., C4 grasses), and the promise of integrating a phylogenetic
perspective in the classification of grasses into functional groups for
climate and vegetation modeling (19, 20).
In step with phylogenetic diversity, we found that the repre-

sentation of functional traits across the precipitation gradients
varied significantly for NA and SA grasses. We used community
weighted trait means (CWM) of the grasses to model the response
of community function to precipitation. The CWMof a trait value is
the mean trait value of each species present in the community
weighted by its relative abundance. The use of CWMs aligns with
the mass ratio hypothesis wherein the dominant species in the
community and their traits are sufficient to describe how a com-
munity will respond to environmental conditions (21). Mean annual
precipitation (MAP) was used for the analysis of trait–environment
relationships, because these grasses are largely perennial long-lived
species that are not establishing over a single season and, thus, their
presence is influenced by longer-term climate conditions. Trait–
MAP relationships were inconsistent in NA versus SA (Fig. 3 and
Table S3), and for 6 of the 11 traits measured, region was a sig-
nificant covariate. In SA, MAP was a significant predictor of leaf
area (LA), leaf % carbon (leaf C), and stomatal pore index (SPI),
whereas MAP was a significant predictor of height, LA, δ13C, leaf
C, leaf % nitrogen (leaf N), leaf carbon to nitrogen (C:N), stomatal
size, and SPI in NA (Fig. 3). SLA, a widely measured and com-
monly accepted key plant trait related to resource availability (10),
exhibited no significant association with MAP in either NA or SA
(Fig. 3C and Table S3). Also height, which has been found to exhibit
a positive association with water availability (22), was significantly

Fig. 1. Regional Bayesian maximum clade credibility phylogenies of grass
species present within plots across all sites in NA and SA. The subimages
represent the percent of total relative abundance represented by each major
grass clade across the sampled precipitation gradient. Numbers within the
subimages represent the number of species within each clade present in
each region based on surveys of floras of the Great Plains of NA (including
New Mexico and Arizona) and SA. Maps of each region show mean annual
precipitation and sampled sites.
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Fig. 2. Relationships between current year’s annual precipitation and ANPP
for grasslands in central NA and SA. Gray area shows the 95% confidence
intervals for the fitted relationship. A shows models fitted separately for NA
and SA, and B shows a single model fit with data from both regions. Error
bars in B represent the SEM ANPP across all plots at each site.

706 | www.pnas.org/cgi/doi/10.1073/pnas.1612909114 Forrestel et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612909114/-/DCSupplemental/pnas.201612909SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612909114/-/DCSupplemental/pnas.1612909114.st01.docx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612909114/-/DCSupplemental/pnas.201612909SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612909114/-/DCSupplemental/pnas.1612909114.st02.docx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612909114/-/DCSupplemental/pnas.1612909114.st03.docx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612909114/-/DCSupplemental/pnas.1612909114.st03.docx
www.pnas.org/cgi/doi/10.1073/pnas.1612909114


related to MAP only in NA (Fig. 3A). In more mesic grasslands
(MAP > 500 mm), grasses were shorter in SA than in NA, but were
able to attain similar levels of production as the taller grasses
of NA (i.e., vegetation was generally denser in SA). This difference
in height response was primarily driven by the mesic-adapted
Andropogoneae, which were on average shorter in SA than in NA,
and the shorter Tristachyideae species, which were only present in
SA. Additionally, at the xeric end of the gradient, the Aristidoideae
of SA were on average taller than the Cynodonteae species of NA
(Fig. 4 and Fig. S4). The only traits that had similar relationships
with MAP in NA and SA were leaf C and SPI. The latter is a di-
mensionless index of stomatal pore area per lamina area and has
been found to be related to drought tolerance and water-use effi-
ciency (23). In this case, SPI was negatively related to MAP.
The interaction of grazing history, fire, and water availability likely

played a role in the evolution of these functional trait strategies
along gradients of precipitation (24), because grasses in both NA and
SA have coevolved with large grazing herbivores and fire. Conse-
quently, the origin of traits associated with drought tolerance and
grazing responses cannot necessarily be disentangled (25, 26). Spe-
cifically, short plants with small and/or tough leaves can be associ-
ated with adaptation to both drought and grazing (25, 26). Further,
the differences in height between NA and SA grasses at the mesic
end of the gradient could in part be the result of differences in cli-
matic, fire, and grazing histories. Whereas both NA and SA have
historically harbored a comparable diversity of large herbivores, the

current extent and species composition of NA grasslands was
achieved primarily in the postglacial period when there was a
lower diversity of grazers (15). In mesic grasslands of NA, the
lower grazing pressure combined with high fire frequency likely
resulted in the filtering and selection of species with traits asso-
ciated with reduced grazing tolerance and higher potential growth
rates (i.e., taller plants; greater leaf area; ref. 26).
As was the case for trait–environment associations between the

two regions, we found that different sets of traits were the best
predictors of ANPP in NA versus SA. In NA, a model that in-
cluded only height and LA was the best fit by using Bayesian In-
formation Criterion (BIC) (marginal R2 = 0.56, conditional R2 =
0.80), and leaf C was also included in the best fit model by using
the Akaike Information Criterion corrected for small sample sizes
(AICc; Table S5). In combination, these traits accounted for 60%
of the variation in total ANPP across plots and sites (i.e., marginal
R2). In SA, a model that included SLA and SPI was the best fit by
using BIC (marginal R2 = 0.29, conditional R2 = 0.59), and height,
LA, LDMC, and leaf C were also included in the best fit model by
using AICc (Table S5). These traits accounted for 48% of the
variation in ANPP. In NA, taller grasses resulted in greater ANPP,
whereas greater LA yielded increased ANPP in both NA and SA.
In SA, leaf C, SLA, LDMC, and SPI were positively associated
with greater ANPP (Table S5). Interestingly, when including var-
iation across plots, height had a slightly negative relationship with
ANPP in SA in the AICc best fit model. The significant amount of
variation in ANPP that could be predicted by functional traits of
the grasses supports the utility of a functional trait approach to
vegetation and ecosystem modeling. However, the fact that dif-
ferent sets of traits drive these patterns in regions with different
histories and phylogenetic compositions highlights the potential
difficulties in using the same traits to predict ecosystem function
across biomes globally, and it emphasizes the importance of fitting
models on a regional basis or reconsidering the use of trait-based
approaches to modeling ecosystem function (27).
Although there was a significant correlation between phylo-

genetic and functional trait turnover in NA (r = 0.790, P = 0.001)
and SA (r = 0.348, P = 0.006), these correlations were driven by

Fig. 3. Community weighted means (CWMs) of the grasses across the broad
precipitation gradients in NA and SA. CWMs were calculated by averaging
the trait value of all species within a plot weighted by their abundance, with
all plots averaged to generate a site-level trait mean. ANCOVA model results
are shown for each trait (A–K). Fitted lines represent the model fits for NA,
SA, and both (for instances when there was no significant difference in
slopes or intercepts for NA and SA). Those graphs without a given line
represent instances where there was no significant relationship. Complete
statistical results for the ANCOVAs are reported in Table S3.

Fig. 4. A principal components analysis of functional trait values for each
common grass species from the NA and SA sites, with stacked relative
abundance plots of all grasses subdivided by major clades. The gray portion
of the graph represents the relative abundance represented by the re-
mainder of the community. Ellipses represent 68% confidence intervals for
the data from each clade. See Fig. S4 for species complete names and Table
S4 for clade-level comparisons of trait values. Trait abbreviations: C13, stable
carbon isotope ratio; Height, maximum culm height; LDMC, leaf dry matter
content; Leaf C, percent leaf carbon by mass; Leaf C:N, percent leaf percent
carbon to nitrogen ratio; Leaf n, percent leaf nitrogen by mass; SLA, specific
leaf area; SPI, stomatal pore index; Stom. density, stomatal density; Stom.
length, stomatal length.
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different sets of traits in each region (Table S2). Further, dif-
ferences in the trait–environment and trait–ANPP associations
were driven by different factors at the mesic and xeric ends of the
precipitation gradient. At the mesic end, there was overlap in the
representation of phylogenetic lineages (i.e., Andropogoneae),
and it was the greater variation in trait values and functional
diversity within the dominant lineages that drove differences in
trait responses, specifically in LA and height (Figs. 3 and 4). At
the xeric end of the gradient, it was the more conserved functional
strategies of different clades in NA and SA that drove differences
in the trait–environment and trait–ANPP relationships (Fig. 4 and
Fig. S4). For the xeric-adapted clades, Aristidoideae dominate
in SA, whereas Cynodonteae, a major subclade of the dry-adapted
Chloridoideae, dominate in NA. Despite occupying a similar
precipitation niche, these clades differ significantly in key func-
tional traits such as height, SLA, stomatal density, LDMC, and
leaf %N (Fig. 4 and Table S4). Cynodonteae exhibit some trait
values commonly associated with grazing and/or drought tolerance
such as small stature, lower LDMC, higher SLA, and higher leaf
%N, whereas Aristidoideae exhibit trait values such as higher
LDMC and lower N that are more commonly associated with
grazing resistance. There is also evidence that different dry-
adapted C4 lineages have evolved different physiological and
functional strategies to cope with low water availability (28),
and these trait differences could have arisen as divergent strategies
to cope with both drought and grazing pressure (25, 26). Re-
gardless of the specific strategies used, these two lineages occupy
distinct functional trait space despite occupying a similar pre-
cipitation niche (Fig. 4).
Importantly, the traits that differ between these two clades

(Aristidoideae and Cynodonteae), such as SLA, LDMC, and leaf
N, are increasingly being used in global climate and vegetation
models (29, 30). Without considering such regional differences in
clade and species representation, trait-based models could yield
poor global estimates of important ecosystem properties. For
example, if one were to produce a model of global production
potential based on the SLA–environment relationship, assuming
that there is a universal relationship (i.e., species with higher SLA
have greater maximum photosynthetic capacity and, therefore,
greater production potential), one would greatly underestimate the
variation. Our results show that SLA, among other traits, does not
vary consistently across the precipitation gradient in different bio-
geographic regions (Fig. 3), and highlights a missing link in the
development of trait-based approaches to modeling ecosystem
function, namely that there is not necessarily a single solution or
set of traits (i.e., “adaptive optima”) that yields higher fitness or
function in a given environment (31). Instead, even within a
single grass clade, there are multiple evolutionary trajectories
that can lead to alternative functional syndromes under a given
precipitation regime.
Our results document a consistent relationship between pre-

cipitation and productivity in NA and SA, and show that annual
precipitation alone adequately predicts grassland ANPP, despite
underlying differences in clade representation and functional
trait values between the two regions. Further, our results high-
light the complexity of relationships among environmental tol-
erances, productivity, and organismal attributes. There is a growing
consensus that a small set of plant characteristics can explain the
major axes of ecosystem function, yet these characters failed to
consistently predict even the simplest of ecosystem productivity
gradients in systems dominated by a single, relatively specialized
lineage, the grasses. Whereas plant functional attributes must be
central in establishing the dramatic clade turnover observed along
precipitation gradients, the set of commonly measured “plant
functional traits” are not adequate to explain general rules dic-
tating ecosystem function. Moreover, we must integrate knowl-
edge of differences in phylogenetic diversity between regions,
which ultimately trace to differences in the historical assembly of

biotas, to make accurate predictions of overall ecosystem function
from functional traits.

Methods
Study Systems. The grasslands of NA and SA both span a broad precipitation
gradient (∼200–1,000 mm/y), exhibit a strong productivity gradient that
reflect east-west increases in precipitation, and overlap considerably in the
climatic space occupied (4, 32; Fig. S1). The primary growing season in NA
grasslands is from May through mid-September (33), and in SA is from mid-
November through March (34). Mean annual temperature was slightly
higher at sites in SA, because of the presence of milder winters, but mean
growing season temperatures were similar. These environmental similarities,
in conjunction with their disparate geological and biogeographic histories,
render them ideal systems to test for the role that historical contingencies
play in driving the turnover in the functional and phylogenetic composition
of communities and their effect on a key ecosystem function, ANPP. Ten
natural grassland sites were selected per region (NA, SA) that spanned a
mean annual precipitation gradient from 255 to 973 and 238 to 934 mm/y
for NA and SA, respectively. Sites were selected based on the maintenance
of the historical fire regime (1- to 3-y fire return intervals at mesic sites, and
>15-y fire return interval at xeric sites) and grazing history. All sites were
ungrazed at the time of sampling, but had a history of grazing in the past
(yet no history of plowing or overgrazing). We chose to focus on ungrazed
sites to avoid confounding effects of differences in herbivore assemblages,
densities, and grazing pressure that could affect both grass community
composition and estimates of ANPP. NA sites spanned the Central Great
Plains and the desert grasslands of the Southwestern United States. SA sites
spanned the grasslands of Kwazulu-Natal, the Free State, the Eastern Cape,
and the desert grasslands of the Little Karoo in the Northern Cape (Table S1
and Fig. S2). Within each native grassland site, four 10-m transects of five
plots that were each 1 m2 (5 plots and 4 transects per site for each region;
n = 20 plots per site, 200 plots per region) were established in an average area
of 30 × 12 m. At each site, a relatively homogeneous upland area dominated
primarily by grasses, which was representative of the broader community,
was chosen to control for heterogeneity in topography and soil moisture. All
sites in both SA and NA are dominated by C4 grasses (accounting for the
bulk of the relative cover and production). No single species occurred in both
NA and SA, with the exception of Eragrostis lehmannia, a native SA species
that was introduced and has become invasive in the Southwestern United
States. There were 62 grass species identified in our plots in SA and 35 in NA.
GPS coordinates, climate, and specific site details are included in Table S1.

Data Collection.
Community composition and productivity. In NA, all community data were col-
lected in the 2011 field season betweenMay and September. In SA, data were
collected in the 2011–2012 field season between December and March. Plant
species composition was measured for all 1 × 1 m plots twice per growing
season in NA and SA, once at the beginning of the season (late May and
early January, respectively) to capture early season species and once at the
end to capture late season species (August and March, respectively). Percent
aerial cover was estimated for each plot to the nearest 1% (for cover less
than 50%) and 5% (for cover more than 50%) for each species rooted
therein (35). Maximum cover values for each species across the season were
used to calculate relative cover for each species (relative cover equals the
cover of a species divided by the total cover in a plot).

ANPP was estimated by collecting all aboveground biomass at the end of
the growing season. ANPP was collected at 8 of the 10 sites in SA and 9 of the
10 sites in NA, because sampling was limited at three sites due to environ-
mental constraints during collection years. Specifically, two 0.1 m2 quadrats
were clipped at ground level within each plot at the time of peak biomass
accumulation (August–September for NA; March for SA). Biomass was sep-
arated into current and previous year’s biomass. Current year’s biomass was
separated into functional groups (woody, forb, and graminoid), with com-
mon grasses sorted to species, and subsequently dried and weighed. Com-
mon grass species are defined as consisting of >2% mean relative cover at
site level, or >10% relative cover in any individual plot. ANPP was estimated
as the sum of all current year’s biomass and was averaged across two
quadrats within each plot. Site level estimates of ANPP were calculated as
the mean across all plots. Thirty-one and 22 species were considered com-
mon and sampled for productivity and traits in SA and NA, respectively.
These species were collectively sampled a total of 59 times in SA and 43 times
in NA across all sites.
Environmental data. Total soil nitrogen and organic carbon were determined
from soil cores collected from each plot in June 2011 in NA and January
2012 in SA. Four cores at 15 cm depth were collected from the four corners
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of a 1 × 1 m plot adjacent to the sampled plot. Soil cores were aggregated
by plot and sieved with a 2-mm sieve. Samples were dried, weighed, and
shipped to Kansas State University Soil Testing Laboratories to be analyzed
for soil nitrogen and organic carbon content via dry combustion (www.
agronomy.k-state.edu/services/soiltesting/).

Long-term averages for annual precipitation and temperature for all sites
in NA and SA were obtained from WorldClim at 30° arc resolution (www.
worldclim.org). Monthly annual precipitation data in SA were obtained from
a combination of landowners (i.e., academic institutions, farmers, govern-
ment) and the SA weather service (www.weathersa.co.za). Annual pre-
cipitation data in NA were obtained from landowners and the US Climatic
Reference Network (USCRN) online database (https://www.ncdc.noaa.gov/
crn/). Monthly annual temperature was obtained from the Climatic Research
Unit CRU v 3.21 (www.cru.uea.ac.uk; ref. 36). Only monthly estimates of
precipitation were available for most sites in SA, so monthly estimates were
used in our analyses for all sites. Total annual precipitation from each site
was calculated as the sum of monthly precipitation totals from the end of
one growing season to the end of the following growing season to more
accurately represent the precipitation that could affect ANPP. Growing
season temperature and precipitation were calculated for both regions as
the mean values of months in the growing season (May through September
for NA, November through March for SA).
Trait data collection. At both sites, data on maximum height, growth habit,
photosynthetic pathway, specific leaf area, leaf dry matter content, stomatal
pore length, stomatal density, stomatal pore index, foliar %N, %C, C:N, and
δC13 were collected during the 2010–2012 field seasons as close to peak
flowering as possible for all common grass species (see above) at each site
(peak flowering ranged from June to September for NA and from December
to March for SA). A minimum of 10 individuals per common grass species
was measured at each site. Specimens were collected for functional trait
analysis adjacent to survey plots. Many species were common at several sites.
Thus, those species that were abundant across a broad climatic range were
collected at several sites to incorporate intraspecific trait differences because
of environmental differences. Flowering stage, height, and collection loca-
tion were also recorded for each species.

Standard methods were used for the collection and processing of all leaf
traits (37, 38). Four fully expanded green leaves in full sun were collected per
individual plant and immediately placed in plastic bags with a wet paper
towel in a cooler. Two leaves were rehydrated for 24–48 h following col-
lection. Subsequently, leaf area and weight were recorded, and the leaves
were dried at 60 °C for at least 48 h. Specific leaf area (leaf area divided by
dry mass) and leaf dry matter content (dry mass divided by wet mass) were
calculated for each leaf. The dried leaves were also ground for foliar C, N,
C:N, and C-13 isotope analysis. Organic carbon and nitrogen isotope samples
were analyzed by using a Costech ESC 4010 Elemental Combustion System
(Costech Anlaytcial Technologies) interfaced with a Thermo Finnigan Delta
Plus Advantage isotope mass spectrometer (Thermo Finnigan-MAT) at Yale
University’s Earth System Center for Stable Isotopic Studies (earth.yale.edu/
yasic-yale-analytical-and-stable-isotope-center). Ultimately, 5 of the 10 leaves
per species and treatment were subjected to leaf tissue analysis.

The other two leaves were preserved in 70% (70 mL 200 proof ethanol/
30 mL distilled water) ethanol solution for analysis of stomatal size, density,
and pore index. Dental putty (President Plus-light body; Coltene/Whaledent
Ltd., Burgess Hill) impressions were taken from the abaxial surface of the
midsection of five individuals and two preserved leaves per individual (n =
10) from each species and treatment. Nail polish peels produced from the
impressions were transferred onto microscope slides and imaged by using a
Zeiss SteREO Discovery.V12 Stereoscope and AxioCam HRc at 200× magni-
fication. Along each peel, six stomata were measured for length and sto-
mata were counted in two fields of view located on either side of the midrib
to calculate stomatal density. Stomatal pore index, an index of total sto-
matal pore area per leaf area, was quantified as stomatal density × the
square of the mean guard cell length (23).
Phylogenetic inference. We estimated phylogenetic relationships for species at
the NA and SA sites together by using the nuclear ribosomal internal tran-
scribed spacer (ITS) region and matK, ndhF, and rbcL chloroplast markers.
These four markers were retrieved from GenBank and supplemented by
sequences obtained from specimens collected at each site. We sequenced
only the three chloroplast markers for our specimens, which matched the
gene regions used by the Grass Phylogeny Working Group (GPWG) II (39).
Total genomic DNA was isolated from dried plant tissue and amplified fol-
lowing the protocol and using the primers specified in GPWG 2011. PCR
products were sequenced by using Applied Biosystems Big Dye Chemistry
and 3730 xL DNA analyzers (Applied Biosystems) at the Keck Biotechnology
Resource Laboratory (Yale University). All new sequences are deposited in

GenBank; voucher specimen information and GenBank accession numbers
are deposited in Dryad (http:/dx.doi.org/10.5061/dryad.q1b6v). The four
markers were aligned by using MUSCLE v 3.7 (40) and manually edited. In-
dividual alignment files were concatenated using Phyutility (41). Our aligned
sequence matrix consisted of 8,606 base pairs. Models of nucleotide sub-
stitution and optimal partitioning strategies were chosen simultaneously
under the BIC using heuristic search algorithms in PartitionFinder (42). The
noncoding nuclear gene region ITS was treated as its own partition. For the
coding genes rbcL,matK, and ndhF, all five combinations of codon partitions
were considered as candidate partitions. Alternative nucleotide substitution
models considered were those available in BEAST v.1.6.2 (43). The best-fit
partition strategy according to BIC was a SYM + I for ITS and a GTR+I+G
model for all other partitions. Phylogenetic relationships were reconstructed
by using Bayesian methods in BEAST v.1.6.2 (43). Mixed partition analyses
were performed for each of the sampled genes and on the concatenated
matrices using the optimal partition strategies identified by PartitionFinder
(42). Trees were unlinked by gene region and analyses were conducted
under a model of uncorrelated rates and a log-normal distribution. Fol-
lowing the BEAST dating analysis of Christin et al. (44), our tree was time-
calibrated by using normally distributed calibrations for the following four
clades: (i) Bambusoideae/Ehrhartoideae, Pooideae-Panicoideae/Aristidoideae/
Chloridoideae/Micrairoideae/Arundinoideae/Danthonioideae (BEP-PACMAD)
split (mean = 49.8, SD = 3.0), (ii) Andropogoneae (mean = 18.0, SD = 3.7), (iii)
Chloridoideae (mean = 34.7, SD = 3.75), and (iv) Aristideae (mean = 8.6, SD =
10.5). The MCMC chain was run for 20 million generations and sampled every
10,000 generations. Convergence of the chain was assessed by visualizations of
the state likelihoods using Tracer v1.5 (43). Effective sample sizes (ESS) for all
model parameter estimates were examined to ensure adequate mixing of the
chain, with ESS values more than 200 indicating appropriate sampling. One mil-
lion generations were discarded as burn-in, and the remaining trees were com-
bined to generate a maximum clade credibility tree that was used for all analyses.

Statistical Analyses.
Relating grass productivity to total ANPP. Using linear mixed models, we first
estimated how well grass ANPP predicted variation in total ANPP where plot-
level production of the grass community was treated as the predictor, and
plot was nested within site, which was treated as a random variable. Percent
of total ANPP attributable to grasses was also calculated for all plots.
Annual precipitation as a predictor of ANPP. Using linear regression models, we
explored across-site variation in total ANPP in different regions (NA versus SA)
in response to annual precipitation. Mean site-level ANPP (averaged across all
plots at each site)was treatedas the response variable in allmodels. In the first set
of models, separate models were run for NA and SA, and slopes and intercepts
were compared by usingWelch’s t test statistic. After finding that there were no
statistically significant differences between NA and SA slopes and intercepts in
the first set of models, a model was fit that combined data from both regions.
Modeling functional turnover along the precipitation gradient. We explored how
variation in precipitation drives community functional turnover on each
continent by fitting ANCOVA’s where the predictor variable was mean an-
nual precipitation, and the response variable was the community weighted
mean of a given functional trait, with continent treated as a covariate.
Separate models were fit for each individual trait. First, we calculated site-
level CWMs of the grass community for all 11 traits (height, leaf area, spe-
cific leaf area, leaf dry matter content, leaf N, leaf C, leaf C:N, stomatal
length, stomatal density, stomatal pore index, and 13C). We used CWM of the
grasses to model the response of community function to precipitation. MAP
was used for the analysis of trait–environment relationships, because these
grasses are largely long-lived perennial plants that are not establishing over a
single season. The CWM of a trait value is the mean trait value of each species
present in the community weighted by its relative abundance. To incorporate
intraspecific trait variation, trait means for each site or precipitation level
were calculated from the dominant grass species collected at that site.
Modeling community function and plot-level production. We explored whether
within- and across-site variation in ANPPwas driven by the functional traits of
each plot and by the constituent species of sites within each region. First, we
calculated plot-level CWMs of the grass community for all 11 traits by using
mean trait values of dominant species from each site. Multiple mixed-effects
model regressions were performed with ANPP as the response variable,
CWMs for each trait as the predictor variables, and site as a random variable.
Leaf C:N was removed from the analysis because it was highly correlated with
leaf C (r = 0.95). All other correlation coefficients between trait variables
were <0.7. Separate models were fit for NA and SA, and all possible models
were compared by using BIC and AICc. All models were fit with the lmer
library (45) and the basic statistical package of R v. 3.0.3. (https://cran.
r-project.org). Model comparisons were carried out by using the dredge
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function in the MuMIn package of R (46). For all linear mixed models, the
marginal and conditional coefficients of determination, which correspond to
the variation explained by the fixed factors alone and the fixed and random
factors together, respectively, were calculated by using the r.squaredGLMM
function in MuMIn.
Multivariate trait space of clades/species. To compare the functional space oc-
cupied by the common grass species/clades represented at each site, a
principal component analysis was carried out by using the prin.comp function
in the base package of R with species trait values of common grass species at
each site from both NA and SA.
Correlations among phylogeny, functional traits, and MAP. To test for correlations
between phylogenetic and functional turnover along the precipitation
gradient on each continent, matrix correlations among a phylogenetic dis-
similarity matrix, a trait dissimilarity matrix, a species-level abundance
community matrix that included all plots, and the mean annual precipitation
values of each plot were calculated for NA and SA separately (47, 48). Spe-
cifically, we tested for: (i) convergence in trait values in response to similar
levels of mean annual precipitation, (ii) phylogenetic signal in trait values
at the species level, (iii) correlations between phylogenetic turnover and
MAP (i.e., environmental filtering of clades), and (iv) correlations between
phylogenetic turnover and trait convergence patterns (i.e., correlation of

clade and trait turnover). Analyses were carried out in the SYNCSA v 1.3.2
package in R (49).
Clade-level functional trait comparison. To test for differences between clades in
the functional trait space they occupy, we conducted ANOVAs on principal
components 1–4 from the principal component analysis of 11 functional
traits on the dominant grasses at each site in NA and SA (Fig. 4). A separate
model was run for each principal component, and clade was treated as a
fixed effect in each model. All analyses were conducted by using the basic
statistical package of R v. 3.0.3. (https://cran.r-project.org). For those princi-
pal components where clade was a significant effect, we conducted Tukey’s
post hoc test to control for multiple comparisons and test all pairwise dif-
ferences between clades.
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Fig. S1. Regional Poaceae clade richness, using GPWG (39) as a backbone tree and grafting on the species for each clade, size of clades represent proportion
of total richness of that clade.
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Fig. S2. Ordination (principal components analysis) of environmental variables (Table S1) from all sites included in study. Site codes are provided in Table S1.
Enivronmental variable abbreviations: AP, annual precipitation; C, soil percent carbon; CommRich, total community richness; Fire, estimated fire frequency;
GrassRich, grass community richness; GSP, growing season precipitation; GST, growing season temperature; MAP, mean annual precipitation; MAT, mean
annual temperature; N, soil percent nitrogen.

Fig. S3. Linear mixed model of grass vs. total ANPP at NA (Left) and SA (Right) sites.
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Fig. S4. Phylogeny of dominant species in NA and SA sites with a subset of trait values mapped onto the tips. Trait values are scaled between zero and one,
and larger circles indicate larger values.
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