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Abstract

Most important organismal adaptations are not actually single traits, but complex trait syndromes that are evolution-
arily integrated into a single emergent phenotype. Two alternative photosynthetic pathways, C4 photosynthesis and 
crassulacean acid metabolism (CAM), are primary plant adaptations of this sort, each requiring multiple biochemical 
and anatomical modifications. Phylogenetic methods are a promising approach for teasing apart the order of charac-
ter acquisition during the evolution of complex traits, and the phylogenetic placement of intermediate phenotypes as 
sister taxa to fully optimized syndromes has been taken as good evidence of an ‘ordered’ evolutionary trajectory. But 
how much power does the phylogenetic approach have to detect ordered evolution? This study simulated ordered 
and unordered character evolution across a diverse set of phylogenetic trees to understand how tree size, models of 
evolution, and sampling efforts influence the ability to detect an evolutionary trajectory. The simulations show that 
small trees (15 taxa) do not contain enough information to correctly infer either an ordered or unordered trajectory, 
although inference improves as tree size and sampling increases. However, even when working with a 1000-taxon 
tree, the possibility of inferring the incorrect evolutionary model (type I/type II error) remains. Caution is needed when 
interpreting the phylogenetic placement of intermediate phenotypes, especially in small lineages. Such phylogenetic 
patterns can provide a line of evidence for the existence of a particular evolutionary trajectory, but they should be 
coupled with other types of data to infer the stepwise evolution of a complex character trait.

Key words: C4 photosynthesis, crassulacean acid metabolism, evolution, intermediate phenotypes, phylogenetic approach, 
phylogeny.

Introduction

One of the most compelling and enduring problems in evolu-
tion is the origin and assembly of complex character traits 
or syndromes. How does natural selection gradually modify 
genes and phenotypes to assemble new and fully integrated 
suites of characters? How can these serial modifications or 
‘steps’ along an evolutionary trajectory be reconstructed? 
Crassulacean acid metabolism (CAM) and C4 photosynthe-
sis in plants are two key examples of such integrated trait 
syndromes. Evolving numerous times in distantly related 
lineages, these morphologically and physiologically distinct 
adaptive syndromes use an internal plant carbon-concen-
trating mechanism that improves the efficiency of C3 photo-
synthesis under conditions of high heat, drought, and/or low 
atmospheric CO2 (Edwards and Ogburn, 2012). The genetic 

and morphological underpinnings of C4 photosynthesis are 
especially well studied, and importantly, many ‘intermediate’ 
phenotypes have been discovered and analysed (Kennedy and 
Laetsch, 1974; Powell, 1978; Hattersley, 1986; Monson and 
Moore, 1989; Kellogg, 1999; Besnard et al., 2009; Feodorova 
et al., 2010; Christin et al., 2011; Sage et al., 2012). These C3–
C4 intermediates have been essential in the construction of 
a theoretical C4 evolutionary trajectory, which maps out the 
transitions from C3 to C4 metabolism as a series of ordered 
events, with anatomical changes preceding most of the bio-
chemical changes, and a precursor (a photorespiratory pump 
carbon-concentrating mechanism) preceding the activation 
of PEP Caryboxylase and the C4 cycle (Sage, 2004, 2012). 
When C3, intermediate, and C4 phenotypes are mapped 
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across phylogenies that span the C3 to C4 spectrum, the inter-
mediates are often placed as sister to a fully C4 group, and the 
intermediate state is then interpreted as the ancestral condi-
tion of their shared node (i.e. Molluginaceae, Neurachninae, 
and Flaveria) (McKown et  al., 2005; Christin et  al., 2011, 
2012). The further interpretation is that, to evolve a full C4 
syndrome, a lineage must first pass through this particular 
intermediate condition.

Similar to C4 photosynthesis, ‘intermediate’ CAM-like phe-
notypes have been discovered and analysed (Sternberg et al., 
1983, 1984; Ting, 1985; Harris and Martin, 1991; Guralnick 
and Jackson, 2001; Winter et al., 2008; Silvera et al., 2010). 
These CAM-like phenotypes fall along a C3 to CAM spec-
trum and are often difficult to characterize as they are vari-
ably expressed and appear indistinguishable from C3 species 
under non-stressful conditions (Ting, 1985; Cushman, 2001; 
Dodd et  al., 2002; Lüttge, 2004). Nevertheless, hypotheses 
posit that these CAM intermediates (CAM cycling and fac-
ultative CAM) may act as evolutionary steps between a typi-
cal C3 plant and a fully expressed CAM syndrome (Monson, 
1989; Guralnick and Jackson, 2001; Sage, 2002; Edwards and 
Ogburn, 2012), although their phylogenetic distribution with 
respect to C3 and CAM lineages is less clear.

There are likely to be a limited set of functional intermedi-
ate phenotypes that are frequently passed through during the 
C3 to C4 transition, and the same is likely to be true during 
CAM evolution as well. This study addresses not whether a 
trajectory (or a set of trajectories) exists, but rather how use-
ful is the phylogenetic approach for uncovering them? The 
situation is more complicated than it appears at first glance 
(Fig.  1), because all of the information on intermediate 
states are found in currently living species—taxa that are not 
ancestral to any other taxa. This study uses the distribution 
of traits among the living ‘tips’ of phylogenies to infer the 
tempo and mode of character evolution and to reconstruct 
past evolutionary events; however, in small trees with few 
character transitions, there is little information to work with. 
For example, in the common scenario pictured in Fig. 1, it 
is typically inferred that the intermediate phenotype evolved 
once, prior to the divergence of the C3–C4 and C4 lineages, 
and so the extant C3–C4 intermediate represents the ancestral 
condition of the C4 clade. (e.g. Fig. 1A). That is certainly a 

plausible scenario, but no more plausible than the alterna-
tives in Fig. 1B and 1C: all scenarios result in only two evo-
lutionary transitions, but only that in Fig. 1A supports the 
hypothesized ordered trajectory of C4 evolution. In general, 
a phylogenetic approach would need a richer ‘tree-trait space’ 
(i.e. many more branches, and many more character transi-
tions) to discern the relative likelihood of these three alter-
natives. While the three taxon case in Fig. 1 is an especially 
information-poor scenario, unfortunately, many empirical 
datasets do not really contain many more transitions, as 
intermediate phenotypes are generally rare in comparison 
to the numbers of species with fully evolved syndromes and 
also require significant effort to detect (McKown et al., 2005; 
Marshall et al., 2007; Vogan et al., 2007; Christin et al., 2011, 
2012; Ocampo et al., 2013).

This study explored the power of the phylogenetic approach 
to identify ordered and unordered evolutionary trajectories 
by simulating character evolution under different evolution-
ary scenarios and across trees of various sizes and shapes. 
Because complete taxon sampling of a focal clade is very rare 
in phylogenetic studies, this study also investigated how lim-
ited taxon sampling across a tree influences the evolutionary 
signal of these ordered and unordered data sets. The findings 
suggest that the taxonomic scale of many phylogenetic studies 
is inadequate for inferring ordered evolution, and surprisingly, 
increasing tree size and the number of evolutionary transi-
tions has a relatively modest positive effect on the accuracy of 
model inference. On the positive side, limited taxon sampling 
does not seem to greatly reduce the overall evolutionary signal 
of the data sets.

Materials and methods

Simulating character evolution
To simulate ordered, discrete character data, eight unique Q matri-
ces were built representing four character states along an evolution-
ary trajectory: state 1 → state 2 → state 3 → state 4. A Q matrix is 
an instantaneous transition rate matrix (Tables 1 and 2) where each 
cell within the matrix corresponds to the probability of transitioning 
between two states.

To specify order within the matrix, an instantaneous transition 
rate of ‘zero’ was assigned to all matrix cells that represent a ‘skip’ 
across states (e.g. 1 → 3, 2 → 4), whereas possible transitions were 

Fig. 1. Interpreting the evolution of intermediate phenotypes along the C4 evolutionary trajectory. (A) The intermediate phenotype (C3–C4 intermediate) 
evolved once, prior to the divergence of lineages 2 and 3, and so the extant intermediate represents the ancestral condition of lineage 3, the C4 clade. 
(B) The C3–C4 intermediate and the C4 phenotype each evolved once after the divergence of lineages 2 and 3, and so the extant intermediate does not 
represent the ancestral condition of lineage 3 (C4 clade) rather the C3 phenotype represents the ancestral condition of both lineages 2 and 3. (C) The C4 
phenotype evolved prior to the divergence of lineages 2 and 3 and the C3–C4 intermediate evolved after the divergence of lineage 2; in this scenario, the 
C4 phenotype represents the ancestral condition of the C3–C4 intermediate. Each of these scenarios only requires two evolutionary steps, though (A) is 
the most common interpretation in the literature.
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assigned integers 1, 2, or 3; integers correspond to relative, but 
not absolute, transition rates. Since all rows must sum to zero, the 
diagonal cells (e.g. 1→1, 2→2) within the matrix are equal to the 
sum of the off-diagonal elements within the rows (i.e. the diagonal 
cells can be negative so that rows sum to zero). Eight matrices were 
built to simulate different models of character evolution (i.e. with all 
transitions occurring at equal rates, with all rates different, with for-
ward and reverse transitions between two characters at equal rates, 
and with high transition rates out of intermediate character states) 
(Supplementary Table S1 available at JXB online). Integers 1–3 were 
placed in matrix cells to reflect these four models of evolution. Four 
of the eight matrices were ordered reversible while the remaining 
matrices were not reversible (meaning that a transition from state 
1 to state 2 was allowed, but a transition from state 2 to state 1 was 
not allowed) (Table 1). All analyses were done using the R Project 
for Statistical Computing.

This work also simulated unordered trait evolution using the same 
four character states with the goal of understanding the probabil-
ity of incorrectly inferring an ordered trajectory. Q matrices were 
constructed to imply unordered evolution between each of the four 
character states, 1, 2, 3, and 4 (Table 2; Supplementary Table S2). 
In other words, transitions between states 1 to 3, 1 to 4, and 2 to 4 
(impossible under the ordered model) were allowed to happen. All 
matrix cells were assigned integers 1, 2, or 3 unless the matrix was 
non-reversible (four of the eight simulating matrices).

Using the rtree function in the APE package (Paradis et al., 2004), 
20 unique ultrametric, coalescent 15-taxon, 50-taxon, 100-taxon, and 
1000-taxon trees were randomly generated for the ordered and the 
unordered character simulations (Fig.  2). Trees generated with the 
coalescent generally capture a smaller fraction of tree shape than do 
birth–death models (Mooers et al., 2007). With the sim.char func-
tion in the Geiger package (Harmon et al., 2008), character evolution 
was simulated across each tree using the constructed matrices (Fig 
2). For a given Q matrix and tree, character data was independently 
simulated 200 times, and the first 10 simulations containing all four 
states at the tree tips (1, 2, 3, 4) were selected for downstream analy-
ses. More data was simulated than used because all four character 
states were not always present across extant tips in each simulation.

Sensitivity analysis
To test for the effect of poor sampling on the ability to infer charac-
ter evolution, a second, ‘pruned’ dataset was generated where 50% 
of the taxa (tips) and corresponding data were randomly removed 
from each of the original simulated data sets across ordered and 
unordered 50-taxon, 100-taxon, and 1000-taxon trees (Fig. 2). Fifty 
per cent of the taxa were not removed from the 15-taxon data set as 
this tree was already quite small.

Approximately 1200 ordered and unordered data simulations 
were generated for each of the 15-taxon, 50-taxon, 100-taxon, and 
1000-taxon groups. This number is lower than the expected 1600 (20 
trees × 8 matrices × 10 simulations of each matrix) because simu-
lated data was removed (1) when all four character states were not 
realized among the 10 simulations when 50% of the data/tips were 
removed and (2) when the transition rates between states were too 
infinitely low (but not zero) to calculate (non-linear minimization 
error). When these errors ensued, simulations were removed from 
the data sets so the analysis could continue to run.

Inferring character transition rates of simulated data
The next step used the simulated data as if a typical phylogenetic 
analysis was being started, with only a phylogeny and character data 
at the tips and no a priori knowledge of the underlying model of char-
acter evolution. Using the ace function in the package APE (Paradis 
et al., 2004), the maximum likelihood estimates of each transition rate 
within the four-by-four matrix were calculated under a model that 
allowed each rate to vary independently (Fig. 2). Since the diagonal 
cells within the matrix are the sum of the off-diagonal elements within 
the rows, 12 transition rates (A–L) corresponding to the remaining 
matrix cells were saved to relevant tables (Table 3), which could then 
be compared to expected rates according to the generating matrix.

Data analysis
The primary goal was to evaluate how well phylogenetic methods 
can detect an evolutionary trajectory using only the phylogenetic 
relationships and trait distributions of living taxa. Analyses were 
focused on comparing the forward transition rates among character 
states (cells A, B, C, E, F, and I in Table 3). Matrix cells B (transition 
of state 1 → state 3), C (state 1 → state 4), and F (state 2 → state 
4) represent the transition rates that were expected to be zero when 
simulated under an ordered model (Table 1). For each simulation, 
this study evaluated how close to zero these rates were, using multi-
ple thresholds for designating an estimated rate as essentially ‘zero’. 
In the most conservative threshold, B, C, and F cells of the estimated 
matrix all had to be zero for the inferred evolutionary model to be 
considered ‘ordered’. Using a more liberal threshold, all B, C, and F 
cells had to be lower than 0.1; and in the most liberal threshold, all 
B, C, and F cells had to have rates that were at least one magnitude 
lower than the average transition rate of cells A, E, and I. Then each 
simulated dataset was designated to be either an inferred ‘ordered’ 
or an ‘unordered’ evolutionary model, according to each threshold, 
and compared this to the actual model used to simulate the data.

Table 1. Ordered Q matrices

Examples of Q matrices (equal rates) used to simulate an ordered 
evolutionary trajectory. Character evolution was modelled using a 
continuous-time Markov model, where each transition between 
character states is assigned an instantaneous rate.

State 1 State 2 State 3 State 4

Reversible Q matrix
 State 1 –1 1 0 0
 State 2 1 –1 1 0
 State 3 0 1 –1 1
 State 4 0 0 1 –1
Non-reversible Q matrix
 State 1 –1 1 0 0
 State 2 0 –1 1 0
 State 3 0 0 –1 1
 State 4 0 0 0 0

Table 2. Unordered Q matrices

Examples of Q matrices (equal rates) used to simulate an unordered 
evolutionary trajectory. Character evolution was modelled using a 
continuous-time Markov model, where each transition between 
character states is assigned an instantaneous rate.

State 1 State 2 State 3 State 4

Reversible Q matrix
 State 1 –3 1 1 1
 State 2 1 –3 1 1
 State 3 1 1 –3 1
 State 4 1 1 1 –3
Non-reversible Q matrix
 State 1 –3 1 1 1
 State 2 0 –2 1 1
 State 3 0 0 –1 1
 State 4 0 0 0 0
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Results

Using the most conservative threshold (all ‘zero’ cells must 
have inferred transition rates to be zero), it was exceedingly 
difficult to infer an ordered evolutionary trajectory, with only 
22% of the 15-taxon tree simulations accepting an ordered 
model, which increased to only 44% in a 1000-taxon tree 
(Fig. 3). Relaxing the threshold of rates to be larger than but 
close to zero greatly improved the ability to infer the generat-
ing model: using a threshold where the ‘zero’ cells must be 
inferred to be at least one order of magnitude lower than the 
average rate of the ‘non-zero’ cells, many more of the ordered 
simulations could be classified as ordered, up to 60% in the 
15-taxon case and 83% in the 1000-taxon case.

However, relaxing the threshold had the additional com-
plicating effect of also drastically increasing the frequency of 
assigning an ‘ordered’ model to simulations that were actually 
generated using an unordered matrix (type I error) (Fig. 4). 
The conservative threshold produced negligible type I error, 
with the exception of the 15-taxon tree (5.7% acceptance of 
an ordered model when the underlying data were unordered). 
However, relaxing the threshold consistently increased the 
propensity to label unordered data as ordered, from 14% in 
1000-taxon trees to an alarming 22% in 15-taxon trees.

Increasing tree size consistently reduced the probability of 
both type I and type II errors, but this improvement was sur-
prisingly modest. The 656% increase in tree size between the 
15-taxon and the 1000-taxon groups resulted in only a 20% gain 
in inference accuracy. In a similar vein, reducing taxon sampling 
produced its predicted effect of reducing accuracy, but the mag-
nitude of the effect was small, typically only reducing the number 
of correctly inferred models by several percentage points (Figs 3 
and 4). The effect of missing data was larger in smaller datasets: 
in the 50-taxon dataset, simulating missing data resulted in an 
average 12% decrease in accuracy across the three thresholds, 
but this reduction was only 3% in the 1000-taxon dataset.

This study also looked at the individual transition rates gener-
ated from each of the eight Q matrices across all tree size classes 
separately, to determine whether data simulated under particu-
lar models of evolution (inferred from the given Q matrices; 
Supplementary Table S1 available at JXB online) were more 

Table 3. Ancestral reconstruction transition rate matrix

Letters A–L refer to the transition rates generated for each ancestral 
character state reconstruction. Transitions BCF and GJK are not 
possible under an ordered model; all transitions are possible under an 
unordered model.

State 1 State 2 State 3 State 4

State 1 – A B C
State 2 D – E F
State 3 G H – I
State 4 J K L –

Fig. 2. Schematic representation of methods used to simulate and analyse ordered and unordered character data (this figure is available in colour at JXB online).
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Fig. 3. Probability of accurately inferring an ordered trajectory when the generating data is ordered for each taxon group at the three predefined 
thresholds, in order of decreasing stringency: (1) cells B, C, and F must be 0 (black); (2) cells B, C, and F must be less than 0.1 (white); (3) cells B, C, 
and F have rates at least one magnitude less than the average transition rate of cells A, E, and I (grey). The probability of inferring the correct evolutionary 
model increases with 1) taxon sample size and 2) loosening threshold stringency.

Fig. 4. Probability of inferring an ordered evolutionary trajectory when the generating data is unordered (type I error) for each taxon group at the three 
predefined thresholds, in order of decreasing stringency: (1) cells B, C, and F must be 0 (black); (2) cells B, C, and F must be less than 0.1 (white); (3) 
cells B, C, and F have rates at least one magnitude less than the average transition rate of cells A, E, and I (grey). The probability of inferring a type I error 
decreases with 1) increasing taxon sample size and 2) increasing stringency.
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indicative of an ordered evolutionary trajectory. No general pat-
terns were detected across all matrices, and, consistent with the 
threshold analyses, transition rates were generally much higher 
in the ‘evolving’ cells, while the cells not allowed to evolve had 
rates close to or at zero (Fig. 5). By looking at the individual 
rates, this study was able to detect a consistent difference among 
the ‘zero’ cells: cell C, which represents a transition from state 
1 to state 4, thereby skipping all intermediate character states, 
had much lower transition rates across all matrices than the 
other ‘zero’ cells (transitions 1 → 3 or 2 → 4). This pattern was 
observed consistently across all trees by matrix combinations.

Discussion

Often, the distribution of intermediate character states across 
the tips of a phylogeny is used to infer the stepwise evolution 
of integrated trait syndromes, such as C4 photosynthesis. This 
study asked: how much power does the phylogenetic approach 
really have to detect ordered trait evolution? By simulating 
ordered and unordered character evolution across a diverse 

set of phylogenetic trees, this study investigated how tree size, 
model of evolution, and sampling efforts influence the abil-
ity of standard phylogenetic comparative tools to detect an 
evolutionary trajectory.

The findings highlight some significant limitations to this 
approach. Under the most data-poor scenario (a 15-taxon 
tree), the methods of inference were, at best, 60% effective 
at detecting ordered evolution, but this came with the seri-
ous cost of also incorrectly inferring order over 20% of the 
time. Increasing clade size improved the situation, but not as 
much as one might hope. Two results are somewhat uplift-
ing. First, increasing clade size from 15 to 50 tips provided 
nearly the same benefit as increasing to 100 tips, suggesting 
that the biggest returns relative to investment might be at the 
small end of the spectrum. Second, in very large clades (1000 
taxa), the effect of missing data appears to be quite negligible. 
This is especially good news for studies of CAM evolution, 
as many CAM-evolving clades are overwhelmingly speciose 
(e.g. orchids, bromeliads) and exhaustive taxon sampling is, 
at this stage, simply not feasible. While this is heartening, it 

Fig. 5. Four-by-four Q matrix represents the transition rates between character states 1–4 for the fully sampled 1000-taxon ordered data set. Box plots 
within each cell represent the generated transition rates for each of the eight simulating Q matrices. Forward and reverse ‘zero cells’ (not allowed to 
evolve under an ordered model) are outlined. Transition rates are consistently lower within the ‘zero’ cells and especially between state 1 and state 4 (this 
figure is available in colour at JXB online).
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comes with the caveat that the missing data were simulated 
randomly with respect to character state. In both C4 and 
CAM syndromes, much more is likely to be known about 
the distribution of fully evolved pathways, as they are easily 
detectable with stable carbon isotopes (Bender, 1971; Bender 
et al., 1973; Sternberg et al., 1984; O’Leary, 1988; Farquhar 
et al., 1989). The sampling in empirical studies may therefore 
be biased towards including known C4 and CAM plants at 
the exclusion of other (potentially still unidentified) interme-
diates, and this particular pattern of sampling bias was not 
addressed in the current study.

Admittedly, there is more than one way to infer an ordered 
trajectory based on phylogenetic patterns, and these analyses 
are fairly simplistic. In future work it might be useful to com-
pare various phylogenetic approaches. An alternative to the 
estimated rates approach used here might be an actual tally 
of inferred transitions, using stochastic mapping (Bollback, 
2006; for implementation in grasses see Roalson, 2011) or par-
simony reconstruction. Another might be to simply compare 
the fit of a suite of character evolution models and choose 
the best-fit model with likelihood scores. This alternative 
approach was tested on a data subset using the Geiger mod-
ule fitDiscrete in R (Harmon et al., 2008). Preliminary analy-
ses indicate that the rate matrix approach may work better 
with smaller trees, and the model-fitting approach increases 
in accuracy more quickly as trees become larger. At the same 
time (and possibly related), a model-fitting approach appears 
more sensitive to poor taxon sampling. While these different 
methods clearly need further examination, one benefit to the 
current approach is that it allows for a closer look at all the 
possible transitions and thus allows for a better intuition of 
where the methods are working and where they are not. For 
instance, matrix cell C (Table 3), which represents a transition 
from state 1 → state 4, had the lowest transition rate across all 
simulations (Fig. 3). This is an important detail, as it suggests 
that a type II error is likely caused by incorrectly inferring 
transitions into and out of intermediate states. Thus, in the 
four character state scenario tested, the methods successfully 
identified that intermediate states were passed through from 
the initial first state to the final fourth state; however, these 
methods were not successful in identifying the exact order of 
the intermediate states.

It is important to realize that the phylogenetic placement 
of intermediate states is an essential component of inferring 
evolutionary trajectories; this work has simply illustrated that 
phylogenetic inference, like anything else, is not infallible and 
should not be given any sort of primary importance when 
evaluating different scenarios supported by different kinds of 
evidence (Christin et al., 2010). A key example of this ‘prior-
ity’ type of treatment is the recent study by Ocampo et  al. 
(2013), who found a C3–C4 intermediate lineage nested within 
the C4 species Portulaca. In spite of acknowledging the ana-
tomical and biochemical differences among the C4 lineages 
that surround this intermediate, the authors seemed to even-
tually be arguing that, because ancestral state reconstruction 
supported a reversion from C4 to a C3–C4 intermediate, this is 
the order of trait evolution that should be accepted. The cur-
rent simulation study suggests that the number of character 

transitions in Portulaca are too few to provide the information 
necessary to feel confident in a phylogenetic reconstruction. 
And indeed, as evidence grows about this particular example 
of C4 evolution, it seems increasingly clear that there have 
been multiple parallel realizations of C4 in different Portulaca 
clades (Christin et al., 2014).

Two recent studies (Heckmann et al., 2013; Williams et al., 
2013) have used alternative approaches to tease apart the evo-
lutionary assembly of C4 photosynthesis. Heckmann et  al. 
(2013) inferred the relative fitness gain of each biochemical 
change along the C4 trajectory, using modelled photosyn-
thetic rate as a measure of fitness, to create the ‘adaptive 
landscape’ of C4 evolution. They found that the intermediate 
C3–C4 phenotypes are indeed transitory states, as the relative 
fitness gains associated with the realization of these interme-
diate phenotypes were minor compared to the fitness gain of 
a fully optimized C4 syndrome. Williams et al. (2013) took an 
entirely different approach and, using empirical data from 43 
studies, characterized 16 biochemical, anatomical, and cellu-
lar characteristics associated with C4 photosynthesis and C3–
C4 intermediates to build a transition network connecting C3 
and C4 photosynthesis. Then, using a Bayesian approach, they 
sampled the biologically relevant ‘paths’ through the network 
to infer the most common order in which phenotypic changes 
have occurred along the C4 trajectory. Findings from this 
study suggest that the evolutionary trajectory of C4 photosyn-
thesis is somewhat ordered but that trait acquisition along the 
trajectory is flexible.

Both of these studies were explicitly non-phylogenetic, and 
the incorporation of phylogenetic information, especially in 
the approach of Williams et al. (2013) is an exciting oppor-
tunity for improvement. Unquestionably, phylogeny has a 
central role in the study of both C4 and CAM evolution: it 
identifies new lineages for research, can provide a timeline 
for transitions, and identifies ecological and organismal cor-
relates. As phylogenetic biologists, the authors truly think 
that phylogeny can and should be integrated into all areas of 
biological research. It is simply important to understand the 
caveats and limitations inherent in inferring past evolutionary 
events with only a handful of data from currently living spe-
cies. A phylogenetic approach provides valuable evidence for 
a particular evolutionary trajectory, but should be considered 
for what it is—an informed hypothesis that can be supported 
or refuted with additional data.

Supplementary material

Supplementary data are available at JXB online.
Supplementary Table S1. Ordered Q matrices.
Supplementary Table S2. Unordered Q matrices.
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