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Abstract

Most genome assemblers construct point estimates, choosing only a single genome sequence from among many
alternative hypotheses that are supported by the data. We present a Markov chain Monte Carlo approach to sequence
assembly that instead generates distributions of assembly hypotheses with posterior probabilities, providing an explicit
statistical framework for evaluating alternative hypotheses and assessing assembly uncertainty. We implement this
approach in a prototype assembler, called Genome Assembly by Bayesian Inference (GABI), and illustrate its application to
the bacteriophage WX174. Our sampling strategy achieves both good mixing and convergence on Illumina test data for
WX174, demonstrating the feasibility of our approach. We summarize the posterior distribution of assembly hypotheses
generated by GABI as a majority-rule consensus assembly. Then we compare the posterior distribution to external
assemblies of the same test data, and annotate those assemblies by assigning posterior probabilities to features that are in
common with GABI’s assembly graph. GABI is freely available under a GPL license from https://bitbucket.org/mhowison/
gabi.
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Introduction

Most current methods for de novo genome assembly generate

point estimates of the genome sequence without explicit statistical

information about confidence in this particular estimate, or its

support relative to other alternative assemblies supported by the

same sequence data [1]. Recently, several probabilistic approaches

have been proposed to quantify assembly certainty and address

these limitations. Computing Genome Assembly Likelihood

(CGAL) approximates the likelihood of an assembly given the

sequence reads and a generative model learned from the data [2];

Log Average Probability (LAP) approximates the likelihood under

a similar model of sequence read generation [3]; and Assembly

Likelihood Evaluation (ALE) uses an empirical Bayesian approach

to estimate the posterior probability of a particular assembly (or

components of that assembly) [4]. Historically, the idea of applying

statistical criteria to the fragment assembly problem was first

proposed by Myers [5], who formulated the problem as a

maximum-likelihood search.

Here we present an alternative Bayesian approach to approx-

imating posterior probabilities, using Markov chain Monte Carlo

(MCMC) sampling [6] to generate an entire posterior distribution

of assembly hypotheses. An MCMC framework for sequence

assembly addresses many of the general problems of accommo-

dating assembly uncertainty, and provides a probabilistic under-

standing of the support for an assembly as a whole, as well as for

particular features of the assembly that the investigator has special

interest in. For example, it may be that each individual assembly

hypothesis has low overall confidence, but that some feature, such

as the order of a set of genes or existence of a specific regulatory

element, is consistent across all the assembly hypotheses and has

high confidence.

Design and Implementation

To demonstrate the feasibility of the MCMC approach, we

have implemented a prototype assembler called Genome Assem-

bly by Bayesian Inference (GABI, https://bitbucket.org/

mhowison/gabi). Because our approach is computationally

expensive, our current tests are limited to the small but well-

studied genome of the WX174 phage (which has NCBI Reference

Sequencec NC_001422.1). Our input data consist of 2,000 read-

pairs drawn from Illumina WX174 sample data (http://www.

illumina.com/systems/miseq/scientific_data.ilmn). Aavailable as

File S1, this subset of reads has maximum length 251 bp, an

estimated mean insert size of 357 bp, and approximately 936
coverage of the WX174 genome.

Conveniently, our approach has technical parallels and similar

conceptual advantages as the advances made over the past 15

years in the application of Bayesian approaches to phylogenetic

analysis [7–9]. As in phylogenetics and other fields, designing an

MCMC sampling strategy that achieves good mixing and

convergence poses a variety of challenges and opportunities. For

sequence assembly, the challenge is to design a mechanism for

proposing new assemblies, a means of calculating the likelihood of

a proposed assembly under an explicit model of read generation,
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and the specification of a prior probability distribution that

describes some prior beliefs about the assembly before the

sequence data were collected. To implement an MCMC sequence

assembler, we made the following choices:

Proposal mechanism
We first build an assembly graph starting from a de Bruijn

graph of the reads. Then we remove all tips (since the WX174

genome is circular) and merge all unambiguous paths into single

nodes that are annotated by the sequence of merged k-mers. The

resulting unresolved assembly graph (no longer de Bruijn) is a

directed graph that consists only of bubbles and is a minimal

representation of the variants that can be inferred from the

sequenced data. Concatenating the sequences across the nodes in

a particular path through this graph gives a possible assembly

sequence.

A particular assembly hypothesis is represented as a boolean

vector, whose values indicate which of the enumerated edges in

the assembly graph are in an active path (Figure 1). We start with a

random vector and propose new assemblies by toggling a value at

random in the current vector. However, when toggling, we enforce

the constraint that an active path cannot take multiple branches

through the same bubble, since this would not spell a contiguous

sequence. Instead, turning on an edge in an alternate branch turns

on the entire alternate branch and turns off the existing path

through the bubble (Figure 2). In this way, we can propose

alternate paths through a complex bubble in one move of the

sampler, without having to split the path and wait for the alternate

branch to randomly activate. Furthermore, we can repeat this

perturbation process a specified number of times for each new

sample. Using several perturbations per sample causes the

proposal mechanism to take larger steps through the combinato-

rial space of possible assemblies.

In our prototype implementation, we only consider paths that

visit an edge at most once. In the general case, however, the

proposal mechanism should be extended to accommodate paths

that revisit edges, in order to resolve repeat regions of a genome.

Likelihood
Because of the constraints described above, the active paths in

every proposed assembly can be output as a FASTA file of

concatenated node sequences. We run LAP directly on this

FASTA file to estimate the proposed assembly’s likelihood.

Priors
An uninformative (e.g., flat) prior distribution could be used if

nothing is known about the genome to be assembled. Since

WX174 is well known, and it has previously been established that

the genome is 5,386 bp and consists of one circular chromosome,

we construct a prior probability distribution as the product of two

gamma distributions, one for the sum of contig lengths (centered at

5,386) and the other for the number of contigs in the assembly

(centered at 1). In other cases, external information about repeat

structure or gene synteny could also be incorporated as priors.

Results

To evaluate the mixing and convergence of our MCMC

sampler, we ran three independent chains and compared their

traces and split frequencies, as is common practice for other

applications of MCMC [10]. Our results show that our design

achieve d good mixing when using a simple Metropolis sampler

[11] with three perturbations per assembly proposal (Figure 3a).

The cumulative frequencies of the individual nodes and edges

were mostly stabilized after 4,000 accepted samples (Figure 3b).

Those with weak support were likely assembled from reads with

sequencing errors. Other nodes and edges were more ambiguous,

with a cumulative frequency hovering at an intermediate value or

varying across samples. Ten nodes achieved a frequency of 100%

(darkest red nodes in Figure 4a) and these include the four nodes

representating the longest unambiguous sequences in the assembly

graph (each longer than 400 bp), for a total of 2,428 bp of

sequence.

Overall, the standard deviation in edge frequencies between the

chains decrease d with additional sampling, indicating that the

independent chains converged to the same posterior distribution

(Figure 3c). The split frequencies among the chains were mostly

correlated after the last sample (Figure 3d). We also tested the

sampler with flat priors, with no likelihood calculations (priors

only), and with different choices of the shape parameter for the

gamma distributions (Figure 5). Our acceptance rate was 22.4%,

which is close to the heuristic of 25% that can be considered

optimal for general Metropolis sampling [12]. Aggregated across

Figure 1. Assembly representation. Contiguous paths through the assembly graph correspond to proposed assemblies, and are represented by
a boolean vector indicating which edges in the graph are active.
doi:10.1371/journal.pone.0099497.g001
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all three chains, the mean compute time per sample was 1.2

seconds and total compute time was 166.3 CPU-hours.

GABI provides multiple ways for summarizing the results of an

MCMC analysis and is built on top of BioLite, a light-weight

bioinformatics framework with rich diagnostics and reporting

capabilities [13]. The assembly graph can be annotated with the

approximated posterior probabilities (Figure 4a), or a consensus

assembly can be extracted, for instance a majority-rule consensus

that shows all edges occurring with frequency w50% (Figure 4b).

The report also includes a FASTA file for the majority-rule

consensus, annotated with the posterior probabilities of its

components, and an interactive animation of the sampling for

each MCMC chain, created with the D3js data visualization

toolkit [14]. A sample report for the MCMC chains analyzed here

is archived in the Brown Digital Repository [15].

GABI includes a tool to assign posterior probabilities to features

of external assemblies that correspond to features in its own

assembly graph. This provides an explicit and unified statistical

framework for comparison of assemblies produced by multiple

methods and software tools. Here, we compare NCBI Reference

Sequence NC_001422.1 and de novo point-estimate assemblies

generated by the String Graph Assembler [16] and Velvet [17].

We require exact matches to identify corresponding features, and

this conservative strategy means that there is not an exact

correspondence between the NCBI reference sequence and the

GABI graph (Figure 4e). For this simple assembly problem, there is

nearly universal agreement among the assemblies: both the

majority rule consensus (Figure 4b) and NCBI reference sequence

(Figure 4e) are proper subsets of the two de novo point-estimate

assemblies (Figure 4c–d). The one notable difference is that the

SGA assembly contains two contigs that choose alternate paths in

Figure 2. Customized proposal mechanism. (a) Starting from an existing (blue) assembly, the proposal mechanism randomly chooses a new
(green) edge. (b) If the edge is not already active, it is extended with a random walk until it meets the existing assembly. (c) This defines a (red)
branch in the existing assembly, (d) which is then removed to yield a new (blue) assembly.
doi:10.1371/journal.pone.0099497.g002
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one of the bubbles, and these alternate paths have similar posterior

probabilities (green highlight in Figure 4c ).

Discussion

A challenge to scaling MCMC assembly is that the combina-

torial complexity of larger assembly graphs could become

prohibitive for full de novo Bayesian assembly of large genomes.

There are several ways to address this, such as applying more

sophisticated sampling methods like Metropolis-coupled MCMC

[18] or bridging states [19] that can explore larger combinatorial

spaces more efficiently; constraining the assembly graph to focus

on particular assembly hypotheses instead of attempting full de novo

assembly; partitioning a larger genome based on an existing draft

assembly and performing MCMC assembly concurrently on

subgraphs of less complexity; or pruning the assembly graph

using additional data from restriction site mappings [20]. Another

promising application is transcriptome assembly, since the

assembly graphs for individual transcripts should be less complex

and can be sampled independently.

Our prototype assembler cannot yet consider repeats, as each

edge can only be visited once. Repeats are common in many

genomes, and addressing them is critical if this approach is to be

widely adopted. Fortunately, a straight-forward extension of our

graph representation from a vector space of booleans to a vector

space of nonÂ-negative integers can represent repeats, where the

integer value for an edge denotes how many times it is visited. The

proposal mechanism can be modified to enforce constraints on the

in- and out-degree of the nodes in the path, to ensure that a

proposed path can be unwound into a valid, contiguous sequence.

Because paired-end alignments are used to calculate the likelihood,

a path with the correct number of repeats will score a higher

likelihood. We expect this to work well because two maximum-

likelihood assembly approaches have already used the same

principle to demonstrate high accuracy in resolving repeat regions

[21,22].

Like existing assemblers, GABI can be used to assemble a point

estimate of a genome, but unlike most other assemblers, the

resulting assembly will have been chosen according to explicit

statistical criteria (posterior probability) and will have associated

information on the confidence in various aspects of its sequence

and structure. In addition, MCMC assembly provides new

opportunities for investigators who are interested not only in the

certainty of a particular inference (e.g. an ALE [4] estimate of

posterior probability for a given assembly), but in the many

alternative hypotheses that are also supported by the data. The

Figure 3. Evidence of good mixing and convergence of three independent MCMC assembly chains. (a) Early in the sampling, the
log(likelihood) reaches a stationary distribution with random noise, indicating good mixing of the chains. (b) Plotting the cumulative node/edge
frequencies shows that most of the frequencies have reached a stationary value. (c) The average standard deviation among the three chains of the
cumulative frequencies approaches zero. (d) A bivariate plot comparing node/edge frequencies between each pair of chains shows that the
frequencies are in agreement across all chains. Both (c) and (d) indicate convergence.
doi:10.1371/journal.pone.0099497.g003

Genome Assembly and Assessment by MCMC Sampling

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e99497



MCMC approach addresses many of the general problems of

summarizing assembly uncertainty and will allow assembly

uncertainty to be propagated to downstream analyses [1].

Methods

The results presented were generated with GABI version 0.2.0

and are recomputable using included scripts (https://bitbucket.

org/mhowison/gabi/src/master/phix-test). Here, we provide

brief comments on the technical details.

Compute resources
All tests were run at the Center for Computation and

Visualization, Brown University, on IBM iDataPlex nodes, each

equipped with 8-core, dual-socket Intel Xeon E5540 (2.53 Ghz)

processors and 24 GB of memory. CPU-hours were calculated as

total walltime across all nodes, multiplied by 8 CPUs per node.

Subset of WX174 sample data
We started with 8.36 Gb of paired-end reads of maximum

length 251 bp from Illumina WX174 sample data (ftp://

webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/

Figure 4. Graphical summaries and comparisons of the WX174 genome assemblies. Each node is a sequence fragment, and alternative
paths through the graph represent alternative assemblies. Node size is proportional to the log length of its sequence. (a) Posterior probabilities for
each node/edge (dark red indicates a posterior of 1.0, grey a posterior of 0.0 ). (b–e) Components of the GABI assembly graph that are found exactly
in the majority-rule consensus GABI assembly (b), SGA assembly (c), Velvet assembly (d), and NCBI reference sequence (e).
doi:10.1371/journal.pone.0099497.g004
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PhiX/PhiX_S1_L001_R1_001.fastq.gz and ftp://webdata:web

data@ussd-ftp.illumina.com/Data/SequencingRuns/PhiX/PhiX_

S1_L001_R2_001.fastq.gz, accessed 2013 Apr 26). Using the bl-

filter-illumina tool from BioLite, we chose the first 2,000 read pairs

that did not contain known Illumina adapter sequences and that

had mean quality score greater than 37 (Phred-33 scoring). This

procedure is available in the script https://bitbucket.org/

mhowison/gabi/src/master/phix-test/00-subset-data.sh.

SGA and Velvet assemblies
To assemble the WX174 subset with SGA, we followed the

example provided for an assembly of E. coli from similar MiSeq

reads (https://github.com/jts/sga/blob/master/src/examples/

sga-ecoli-miseq.sh). To assemble with Velvet, we used the included

VelvetOptimiser tool to sweep coverage and cutoff parameters for

a k-mer size of 99. The estimated mean and standard deviation of

the insert size reported earlier were obtained from VelvetOpti-

miser’s output. This procedure is available in the script https://

bitbucket.org/mhowison/gabi/src/master/phix-test/01-assemble.

sh.

De Bruijn graph reduction
First, we recursively and completely trimmed all tips (edges with

an incidence of one), because the WX174 genome is circular (for a

linear genome, a softer tip trimming threshold would be more

appropriate). Next, we merged all simple paths through the graph,

similar to the process of reducing an overlap graph to a string graph

[23]. We annotated the new node with the accumulated overlap of

the merged nodes’ k-mers, which accumulates one additional

nucleotide for each merged node. Finally, we split the graph into

weakly connected components and choose the largest one. A path

of edges through the graph spells a contig by concatenating the

annotations on the nodes in the path.

Figure 5. The prior probabilities influence the posterior distribution. Running the sampler with no data so that the posterior probabilities
are determined by the prior probabilities only (a), with flat priors (b), or with different values of the shape parameter k for the gamma distributions of
genome length and number of contigs (c–e) all cause shifts in the posterior distribution of edge frequencies. The baseline for the change in
frequency is Chain 1 from Figure 3 with k~10, and all chains here were initialized with the same random seed as Chain 1.
doi:10.1371/journal.pone.0099497.g005
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Odds ratio
To determine whether to accept a proposed assembly hypoth-

esis, we calculate the odds ratio [11] of the posterior probabilities

of the old assembly, P(H DD), and the new perturbed assembly,

P(H�DD), as:

R~
P(H�DD)

P(H DD)
~

P(DDH�)P(H�)

P(D)
P(DDH)P(H)

P(D)

~
P(DDH�)P(H�)

P(DDH)P(H)
ð1Þ

If this ratio is greater than 1, the new assembly is automatically

accepted. If it is less than 1, it is accepted with probability R. The

process is then repeated until there is a stationary distribution of

assemblies in the sample, which occurs when the frequency of

assembly attributes does not change with additional sampling.

Supporting Information

File S1 WX174 sequence data. A subset of 2,000 paired-end

reads (maximum length 251 bp, estimated mean insert size

357 bp) drawn from Illumina MiSeq sample data (http://www.

illumina.com/systems/miseq/scientific_data.ilmn ).

(ZIP)
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