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Abstract

A number of studies have demonstrated the ecological sorting of C3 and C4 grasses along temperature and moisture

gradients. However, previous studies of C3 and C4 grass biogeography have often inadvertently compared species in

different and relatively unrelated lineages, which are associated with different environmental settings and distinct

adaptive traits. Such confounded comparisons of C3 and C4 grasses may bias our understanding of ecological sorting

imposed strictly by photosynthetic pathway. Here, we used MaxEnt species distribution modeling in combination

with satellite data to understand the functional diversity of C3 and C4 grasses by comparing both large clades and

closely related sister taxa. Similar to previous work, we found that C4 grasses showed a preference for regions with

higher temperatures and lower precipitation compared with grasses using the C3 pathway. However, air temperature

differences were smaller (2 °C vs. 4 °C) and precipitation and % tree cover differences were larger (1783 mm vs.

755 mm, 21.3% vs. 7.7%, respectively) when comparing C3 and C4 grasses within the same clade vs. comparing all C4

and all C3 grasses (i.e., ignoring phylogenetic structure). These results were due to important differences in the envi-

ronmental preferences of C3 BEP and PACMAD clades (the two main grass clades). Winter precipitation was found

to be more important for understanding the distribution and environmental niche of C3 PACMADs in comparison

with both C3 BEPs and C4 taxa, for which temperature was much more important. Results comparing closely related

C3–C4 sister taxa supported the patterns derived from our modeling of the larger clade groupings. Our findings,

which are novel in comparing the distribution and niches of clades, demonstrate that the evolutionary history of taxa

is important for understanding the functional diversity of C3 and C4 grasses, and should have implications for how

grasslands will respond to global change.
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Introduction

C3 and C4 grasses are two fundamental plant functional

types (PFTs) that play important and distinct roles

in ecosystem functions such as global terrestrial

productivity and water cycling. Although C4 plants

account for 20–25% of global terrestrial productivity

(Still et al., 2003a), large uncertainties remain regarding

their response to climate variability and future global

change. Part of this uncertainty stems from our ability

to characterize the environmental, ecological, and evo-

lutionary controls on C3 and C4 grass distributions.

Numerous studies have demonstrated the ecological

sorting of C3 and C4 grasses along spatial gradients,

particularly temperature gradients (reviewed in Sage &

Monson, 1999). The prevailing explanation for

temperature controls on C3-C4 distributions is the bio-

chemically based temperature crossover model (Ehle-

ringer et al., 1997), which predicts that C4 plants will be

more competitive and thus more abundant in grassland

regions where the mean monthly air temperature

exceeds 22 °C (Collatz et al., 1998; Still et al., 2003a).

Although the temperature crossover model is a power-

ful approach for predicting regions and climates where

C4 grasses should be dominant over C3 grasses, it has

several drawbacks. For example, certain regions where

C4 grasses are known to be dominant, such as the

cooler high plateaus of South Africa, are not captured

by this approach because they do not experience mean

monthly temperatures in excess of 22 °C (O’Connor &

Bredenkamp, 1997). Another limitation of the crossover

temperature model is that C3 and C4 grasses are each

assigned separate but uniform temperature thresholds;

thus, the large functional and ecological diversity that

exists in grasses is not captured.
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There is long-standing observational evidence of

C3-C4 partitioning along moisture gradients (Chazdon,

1978; Vogel et al., 1986). Precipitation amount and

drought tolerance should be important in C3-C4

distributions because physiological and biochemical

differences related to photosynthetic pathway produce

higher rates of carbon uptake per unit of transpired

water (i.e., photosynthetic water-use efficiency) in C4

grasses (Pearcy & Ehleringer, 1984). More importantly,

the interaction between temperature and precipitation

should be a key in understanding the distribution of

these PFTs. Both seasonal and interannual variation in

temperature and precipitation have been shown to be

strongly related to C3 and C4 grass distributions, with

C3 grasses typically active during the cool-wet season

and C4 grasses active during the warm-dry season

(Teeri & Stowe, 1976; Paruelo & Lauenroth, 1996;

Tieszen et al., 1997; Davidson & Csillag, 2003; Winslow

et al., 2003; Still et al., 2003b; von Fischer et al., 2008).

Despite well-established patterns along temperature

and moisture gradients, research on C3 and C4 grass

ecology can benefit from recent advances in compara-

tive methods and in the development of well-resolved

grass phylogenies (Edwards et al., 2007; Edwards &

Still, 2008; Edwards & Smith, 2010). Previous studies of

C3 and C4 ecology have often inadvertently compared

species in different and relatively unrelated lineages.

Most C3 grasses are found in two distinct lineages

whose last common ancestor likely lived between 50

and 80 Mya (Vicentini et al., 2008). Likewise, there are

an estimated 22–24 independent origins of the C4 path-

way (Grass Phylogeny Working Group II, 2012). Conse-

quently, there should be considerable diversity within

C3 and C4 groups associated with different lineages,

distinct environmental settings, and associated adap-

tive traits that confound our understanding of

ecological differences imposed strictly by photosyn-

thetic pathway (Edwards & Still, 2008; Edwards &

Smith, 2010; Taylor et al., 2010). In other words, photo-

synthetic pathway may be associated with other traits

conserved through evolutionary history. For example,

recent work has suggested that most grasses are

warm-climate specialists, regardless of photosynthetic

pathway, and a closer look at the environmental con-

text associated with C4 origins indicates that differences

in habitat aridity and irradiance may have played a lar-

ger role than temperature in C4 evolution (Edwards &

Smith, 2010). Similarly, experimental evidence has

demonstrated greater water-use efficiency in grasses

with the C4 pathway compared with closely related C3

sister taxa (Taylor et al., 2010). Thus, we hypothesize

that temperature differences in C3 and C4 grasses may

not be as important as differences in water-use efficiency

or irradiance. By comparing the environmental

preferences of C3 and C4 grasses within and among

evolutionary lineages, we can refine our understanding

of differences due principally to photosynthetic

pathway as well as highlight functional diversity across

lineages. Phylogenetically structured comparisons

should improve our ability to predict the distribution,

abundance, and ecological success of C4 photosynthesis

and associated ecosystem functions in response to

future climate change.

Here, we investigate the ecological setting and envi-

ronmental niche of C3 and C4 grasses in a phylogenetic

context – comparing clades and sister taxa – to provide

novel information on the distribution and functional

aspects of these grasses. To explore how a variety of

environmental controls – beyond air temperature –
define C3 and C4 niches and distributions, we utilized a

species distribution model (SDM) approach (this is also

known as ecological niche modeling – see Franklin,

2009). SDMs utilize environmental information gath-

ered from geo-referenced collection localities to under-

stand the environmental correlates of species as an

indication of their ecological requirements and to

model their geographic distributions (Franklin, 2009).

We used this approach to quantify and assess the

abiotic factors that control C3 and C4 distributions (the

fundamental niche) based on species’ localities that

incorporate biotic limiting factors (the realized niche)

(see Franklin, 2009 for a discussion of niche concept in

SDMs). Species distribution modeling is an increasingly

popular methodology applied to problems in conserva-

tion biology, biogeography, ecology, and systematics

(reviewed in Guisan & Thuiller, 2005). We extend the

SDM approach to better understand the ecological and

functional diversity of higher levels of taxonomic

organization. Using niche modeling within a phyloge-

netic context to examine major PFTs and large clades

(as opposed to individual species) is a novel application

of this modeling approach (Huntley et al., 2004; Guisan

& Thuiller, 2005; Chapman & Purse, 2011; see Methods

and Discussion for further discussion of modeling the

aggregated niches of clades).

We also exploited several satellite-derived datasets to

characterize the environmental niches of these grasses;

such datasets should provide several advantages over

station-based air temperature and moisture climatolo-

gies. This may be especially true over large regions of

the tropics where meteorological stations are sparse

and can lead to large interpolation errors (New et al.,

2002; Daly, 2006). Remotely sensed datasets are contin-

uously observed and not modeled or interpolated, and

they are often freely available. As demonstrated by

Buermann et al. (2008), including remotely sensed data

can improve model predictions for some species (see

also Phillips et al., 2006; Bradley & Fleishman, 2008;
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Gillespie et al., 2008; Bisrat et al., 2011). One satellite

dataset we use is a measure of the surface skin temper-

ature, a quantity that has rarely been used for SDMs

despite its obvious linkage to surface microclimates,

and we demonstrate its potential importance here.

The Hawaiian Islands provide an ideal setting for this

work because of their broad climatic gradients encom-

passed in a small geographic region. This allows us to

capture the response of these grasses to a wide range of

environmental variability within a discrete background

setting. The majority of the Hawaiian grass flora (~200
species) is nonnative and has been introduced in the

last 100–150 years (Wagner et al., 1999). Thus, the pres-

ent-day grass communities in Hawaii have assembled rela-

tively recently and grass distributions should be the result

primarily of ecological sorting, and not a result of insular

biogeographical processes that would limit the generality

of our results to other regions (Edwards & Still, 2008).

Materials and methods

Species and environmental data

We used 3595 digitized herbarium collections for Poaceae

across the main seven Hawaiian Islands (Kauai, Oahu, Molo-

kai, Lanai, Maui, Kahoolawe, and Hawaii), representing 152

species and over a century of collections from the Smithso-

nian Flora of the Hawaiian Islands Website and The Bishop

Museum Herbarium (details on this dataset are provided in

Edwards & Still, 2008). These specimens were assigned to

either the ‘BEP’ or ‘PACMAD’ clade (most species of

Poaceae belong to one or the other clade). ‘PACMAD’ is an

acronym for Panicoideae, Aristidoideae, Chloridoideae,

Micrairioideae, Arundinoidae, and Danthonioideae lineages.

Our BEP occurrences refer largely to the Pooideae lineage

because Bambusoideae (bamboos) and Ehrhartoideae, which

make up the majority of BEP aside from Pooideae, were not

well represented in the herbaria collections. We used the

MaxEnt SDM (Phillips et al., 2006), described below, to better

understand key environmental and ecological differences

between: (1) all C3 taxa (combining both BEP and PACMAD

clades) and C4 taxa, (2) C3 PACMADs and C3 BEPs, and (3)

closely related sister taxa in the PACMAD clade that differ

principally in photosynthetic pathway. For sister taxa, we

focused our efforts on the C3 grass genus Oplismenus (group-

ing O. compositus and O. hirtellus) and the C4 grass genus

Echinochloa (grouping E. colona and E. crusgalli). These three

comparisons illustrate typical comparisons between C3 and C4

grasses irrespective of evolutionary lineage (case 1 above), the

diversity among clades that are commonly grouped (case 2),

and finally niche differences associated primarily with photo-

synthetic pathway in closely related sister taxa (case 3).

When describing the aggregate niche of a clade, either all

species in a clade should be equally represented in the occur-

rence data or the dominance of certain species (i.e., their

ecological abundance) may be considered because they

contribute to a larger proportion of the niche space occupied by

the clade. When using herbaria collections, widely collected

species may indicate ecological abundance (in our case,

the exceptions are bamboos and Ehrhata, which could be

considered common, but are not widely collected – C. Imada,

personal communication) so that equal sampling may not be

necessary. Nonetheless, we further examined the niche of each

group (C3 BEP, C3 PACMAD, and C4 PACMAD) by randomly

subsampling an even number of occurrences from each species

in the group (see Supporting Information for details).
Remote sensing data were obtained from a variety of

satellite-based sensors. We used the NASA Shuttle Radar

Topography Mission (SRTM) 90 m resolution (C-band) digital

elevation model (DEM) obtained from the Consortium for

Spatial Information (http://srtm.csi.cgiar.org) version 4.1 for

our elevation layer. Elevation should in theory capture some

interactions among temperature, moisture availability (associ-

ated with both the temperature lapse rate and orographic pre-

cipitation that primarily affects mid to high elevations), solar

radiation (which is high at elevations above the cloud inver-

sion layer), and also variations in CO2 partial pressure (which

decreases with increasing altitude). However, because eleva-

tion is considered an indirect gradient that has no direct phys-

iological basis for predicting plant distributions (Austin &

Smith, 1989), but is nonetheless an effective proxy variable

that captures many processes, we present results of variable

importance both with and without elevation as a predictor. As

a proxy for both tree cover and habitat openness (i.e., high

and low light grass environments), we used the Vegetation

Continuous Fields (VCF) product (MOD44B, Collection 4, ver-

sion 3) from the year 2005 (the most recent year available),

which provides a continuous measure of percent canopy cover

(hereafter referred to as ‘% tree cover’). The % tree cover prod-

uct is derived from monthly composites of all seven reflec-

tance bands in the NASA Moderate Resolution Imaging

Spectroradiometer (MODIS) Surface Reflectance data at 500 m

spatial resolution using global training data and phenological

metrics in a regression tree (Hansen et al., 2003). We also

included the Terra MODIS Land Surface Temperature (LST)

product (MOD11A2) Collection 5, which provides 8-day com-

posite data at 1 km resolution. Daytime LST data were

screened using the ‘QC_Day’ scientific dataset for only ‘good

quality’ pixels (i.e., not contaminated by clouds or aerosols –

Wan 2002). For each land pixel across the Hawaiian Islands, a

10-year average of daytime LST data, referred to hereafter as

‘LST’, was created using screened data from February 2000-

February 2010. We also calculated the coefficient of variation

(called ‘LST CV’) across the entire 8-day time series. Mean

annual precipitation (MAP), mean monthly precipitation,

mean annual air temperature (MAT), and mean monthly tem-

perature climate grids were provided at 250 m resolution by

T. Giambelluca (Giambelluca et al., 1986). The SRTM, % tree

cover, and LST data were resampled to a 250 m grid cell spa-

tial resolution in ArcGIS using a nearest neighbor approach to

match the majority of the environmental layers and to better

capture the spatial scale of the plant collection localities. All

data preprocessing was performed using ArcGIS v.9.3 (Envir-

onmental Systems Research Institute, Redlands, CA, USA) or

IDL v.7.1 (Exelis Visual Information Solutions, Boulder, CO,

USA).

© 2012 Blackwell Publishing Ltd, Global Change Biology, 19, 184–196

186 S . PAU et al.



Species distribution/ecological niche modeling

We used the freely available software package known as

MaxEnt, which is a statistical learning method based on the

principles of maximum entropy modeling to predict habitat

suitability for the organism(s) of interest (Phillips et al., 2006;

Phillips & Dudı́k, 2008). The approach is conservative by

assuming a probability distribution of maximum entropy

(closest to uniform) with the constraint that the expected value

of each environmental feature (and their interactions) fits the

empirical average for that feature estimated from the occur-

rence points (Elith et al., 2011). MaxEnt was developed for use

with presence-only species data, thus making it appropriate to

use with herbarium records. Its performance has been demon-

strated to be consistently high compared with other species

distribution modeling methods (Elith et al., 2006; Hernandez

et al., 2008). This technique also allows flexibility and varying

degrees of detail compared with the more mechanistic, but

categorical crossover temperature approach described above.

For instance, with MaxEnt we can predict the present-day geo-

graphic distributions of plant functional types (C3 vs. C4

grasses), as well as for individual grass species and grass

clades. Another advantage of MaxEnt is its ability to utilize a

wide range of environmental layers for its predictions. In par-

ticular, MaxEnt’s regularization method, which balances

model fit and model complexity, can deal with a large number

of correlated variables, although including variables that are

known to be ecologically irrelevant is not recommended (see

Elith et al., 2011).

We evaluated model performance based on AUC (area

under the curve of the receiver-operating characteristic plot)

values. In presence-only models like MaxEnt, AUC values

describe the probability that the model scores a random pres-

ence site higher than a random background site (Phillips et al.,

2006). In other words, AUC provides a measure of how well

the model accurately predicts the probability of occurrence

across a landscape. Twenty-five percent of randomly chosen

sample records were set aside for testing the fit of the model,

whereas the remaining sample records were used to train the

model. We also examined jackknife tests of variable impor-

tance, which assess the relative importance of each environ-

mental variable in estimating the species distribution. Each

environmental variable is successively omitted and a model is

created with the remaining variables to examine how much

independent information that predictor contained. A model is

also created with each variable in isolation to examine how use-

ful that predictor alone is for estimating the species distribu-

tion. In general, patterns of variable importance based on

jackknife tests were similar in their ranked contributions to

training gain, test gain, and AUC gain, and thus we only show

results from the contribution to training gain because it repre-

sents how well the model fits 75% of the data. MaxEnt also pro-

vides response curves showing how its prediction depends on

each environmental variable used in isolation to account for

potential strong correlations among and between environmen-

tal variables. These response curves indicate how each environ-

mental variable may limit a taxon’s niche. The MaxEnt

prediction is a logistic probability of presence that is based on

presence-only data; however, from here on we refer to the

MaxEnt output as simply ‘probability of presence’. This logistic

output assumes that a value of ‘0.5’ indicates ‘typical’ presence,

i.e., a 50% chance of the taxa being present in the suitable areas

(see Phillips & Dudı́k, 2008 and Elith et al., 2011 for detailed

discussion of theMaxEnt output).
We then quantified niche overlap and niche breadth of C3

PACMAD, C3 BEP, and C4 grasses using ENMTools v.1.3

(Warren et al., 2008). The degree of niche overlap was evalu-

ated using common indices, I, D, and relative rank statistics,

which all range from 0 (completely different niches) to 1 (iden-

tical niches) (Krebs, 1989). Whereas the I and D statistics

examine the difference between habitat suitability scores for

models of different taxa at each grid cell, the relative rank sta-

tistic considers the ranking of habitat suitability in each grid

cell relative to other grid cells regardless of the absolute differ-

ence between models (see Warren et al., 2008 for full discus-

sion of these metrics). We quantified niche breadth using a

common measure of ‘inverse concentration’ (Warren et al.,

2008; Levins, 1968; Krebs, 1989). To illustrate niche overlap,

we created a divergence map of the MaxEnt models to high-

light differences between C3 members of the two major grass

clades (PACMADs vs. BEPs). The MaxEnt typical default

prevalence of 0.5 is not comparable across rare and common

taxa because of the sampling effort required to obtain the pres-

ence data (in presence-absence data, sampling bias affects

both presence and absence, therefore the effect should be can-

celed out – Elith et al., 2011). Thus, we modified the default

prevalence of each group using the proportion of the number

of occurrences for each group divided by the total number of

grass specimens from herbaria collections (the time period of

collection has been similar for all taxa). C4 grasses have been

the most widely collected grass specimens (66.6% of collec-

tions), followed by C3 BEPs (23.9%), and C3 PACMADs

(9.5%). This estimate of abundance assumes that collection

intensity has been the same for each clade and that the num-

ber of herbaria specimens approximate ecological abundance

(which is likely true for abundant species, whereas rare

species are possibly over represented in herbaria collections,

C. Imada, personal communication – see above).
Finally, we offer a comparison of MaxEnt model predictions

against those made by the crossover temperature model (Ehle-

ringer et al., 1997; Collatz et al., 1998; Still et al., 2003a). This

model is the dominant approach for predicting climates where

C4 grasses should have higher photosynthetic rates and thus

should outcompete C3 grasses, and it has been used to map the

global distribution of C3 and C4 grasslands in the present (Col-

latz et al., 1998; Still et al., 2003a) and at smaller spatial scales in

the geologic past (Fox & Koch, 2004; Osborne & Beerling, 2006).

The crossover temperature approach also allows one to include

the impacts of past and future atmospheric CO2 variations on

photosynthetic performance and thus potential C3 and C4 grass

distributions (Collatz et al., 1998). This is difficult with a species

distribution model like MaxEnt, which at best implicitly

includes a CO2 effect on plant distributions. We created a tem-

perature crossover prediction by summing the number of

months that meet the C4 climate criteria in our mean monthly

climate layers (meanmonthly temperature greater than or equal

to 22 °C and mean monthly precipitation greater than or equal

to 25 mm in that same month) for each pixel. We then assessed
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the frequency of C4 grass occurrences in those pixels where the

C4 climate criteria were met by the crossover temperature

model, and we also screened out pixels with > 50% tree cover

(i.e., we restricted our analysis to open habitats).

Results

Distribution modeling

All C3 (BEP and PACMAD combined) vs. all C4

taxa. Both the C3 and C4 models performed moder-

ately well (AUC for training data = 0.83 and 0.76,

respectively). Jackknife tests of variable importance

showed that winter precipitation and summer air

temperature contributed the most to the C3 model

training gain when used in isolation, whereas % tree

cover and January precipitation decreased gain the

most when excluded from the model (Table 1). This

combined impact on training gain implies that winter

precipitation and summer temperatures were the most

important variables for the prediction of C3 distribu-

tion, but % tree cover and January precipitation con-

tained the most unique information. When elevation

was included in the SDM, elevation contributed the

most to training gain and decreased training gain the

most when excluded. In comparison, summer temper-

atures contributed the most to the training gain of the

C4 model and training gain decreased the most when

December and January precipitation, and LST CV

were excluded (Table 1). Thus, winter precipitation

and the interannual variability in LST CV contained

the most unique information. When elevation was

included, it was the second highest contributor to

training gain and decreased model gain the most

when excluded.

Response curves showed that all C3 taxa appeared to

prefer MATs between roughly 10–20 °C, above which

probability of presence declined rapidly (sample

mean = 16.2 °C). By contrast, the C4 response curve

showed a steadily increasing probability of presence

with increasing MAT until a sharp drop at about 23 °C
(mean of all sample points = 20.2 °C). This sharp drop

is due to the fact that almost no pixels in Hawaii

experience MATs higher than 23 °C. For all C3 taxa

(PACMAD and BEP clades), probability of presence

generally increased with increases in MAP (sample

mean = 2229 mm), whereas it decreased for C4

taxa (sample mean = 1474 mm). C3 grasses occurred

in regions with higher % tree cover (sample

mean = 45.8%) and lower LST (sample mean = 24.2 °C)
compared with C4 grasses (38.1% and 25.8 °C,
respectively). These diverging trends, with C4 taxa pre-

ferring warmer, drier, and more open environments,

and C3 taxa preferring colder, wetter, and shadier

environments, generally agree with previous findings

that used different approaches to characterize climatic

preferences of C3 and C4 grasses.

C3 PACMAD vs. C3 BEP. The C3 PACMAD model

performed well (AUC for training data = 0.90), while

model performance for the C3 BEP model was slightly

lower (AUC for training data = 0.86). These AUC

values were slightly higher than for the all C3 model,

which grouped many more species and thus repre-

sented broader niches than smaller clade groupings.

Jackknife tests of variable importance showed that

winter precipitation and LST contributed the most to

the C3 PACMAD model training gain when these vari-

ables were used in isolation meaning that these were

the most effective variables for predicting the distribu-

tion of PACMADs (Table 1). However, % tree cover

decreased training gain the most when excluded from

the model, demonstrating that % tree cover is a distinct

variable containing information that is not included in

the other variables. Interestingly, winter precipitation,

which represents the wet season when the majority of

precipitation falls, was found to be more important than

summer precipitation for the C3 PACMAD model; also,

air temperature in any month contributed very little to

the model training gain for this clade. In comparison

to the C3 PACMAD model, air temperature variables

were the primary contributors to C3 BEP model and

model gain decreased the most when % tree cover and

LST were excluded, again suggesting that % tree cover

and LST contain the most unique information of the

environmental variables (Table 1). When elevation was

included in the model, it was the primary contributor

to the C3 BEP model gain, and model gain decreased

the most when elevation was not included.

Response curves showed that the predicted probabil-

ity of presence for C3 PACMADs increased with air

temperature up to about 16 °C, but declined rapidly

above about 21 °C (sample mean = 18.2 °C) (Fig. 1a).

In comparison, C3 BEPs showed a preference for cooler

regions (sample mean = 15.5 °C; Fig. 1d) compared

with C3 PACMADs with relatively high probability of

presence at low MAT, which declined rapidly above

20 °C. Probability of presence for C3 PACMADs

increased with MAP (sample mean = 3257 mm;

Fig. 1b). By contrast, C3 BEPs exhibited a general

preference for relatively drier regions (MAP sample

mean = 1895 mm), although the MAP response curve

for this group did show an increase above 4000 mm

(Fig. 1e). For both groups, the high probability of

presence in regions with very high precipitation (above

6000 mm yr�1) is a result of the few background pixels

(i.e., small land area) representing those environmental

conditions – in other words there are few samples
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Table 1 Jackknife tests of variable importance for model training gain (i.e., how well the model fits 75% of the data), which assess

the relative importance of each variable in estimating the species distribution model. Each variable is successively omitted (‘training

gain without variable’) and also used in isolation (‘training gain with single variable’). MAT = mean annual temperature; MAP =
mean annual precipitation; LST = land surface temperature; LST CV = coefficient of variation of land surface temperature; months

are referred to by three letter abbreviations. See Methods for details about environmental variables

C3 training gain

without variable

C3 training gain with

single variable

C4 training gain

without variable

C4 training gain with

single variable

%Tree cover 0.5610 Feb precipitation 0.1599 Dec precipitation 0.3454 Jun temperature 0.1534

Jan precipitation 0.5622 May temperature 0.1477 Jan precipitation 0.3466 May temperature 0.1522

LST CV 0.5808 Dec precipitation 0.1469 LST CV 0.3479 Jul temperature 0.1522

Sep precipitation 0.5832 Nov temperature 0.1368 %Tree cover 0.3507 Aug temperature 0.1517

LST 0.5834 Jan precipitation 0.1360 Aug precipitation 0.3509 Sep temperature 0.1498

Jun precipitation 0.5841 Jun temperature 0.1347 LST 0.3513 MAT 0.1446

Feb precipitation 0.5857 Apr temperature 0.1342 Apr temperature 0.3532 Oct temperature 0.1430

Jul precipitation 0.5874 Jul temperature 0.1342 Sep precipitation 0.3533 Dec temperature 0.1421

Aug precipitation 0.5877 MAT 0.1335 Mar temperature 0.3544 Apr temperature 0.1419

Mar temperature 0.5892 Oct temperature 0.1330 Jun precipitation 0.3546 Mar temperature 0.1409

Feb temperature 0.5899 Jan temperature 0.1304 Nov precipitation 0.3555 Nov temperature 0.1401

Dec precipitation 0.5900 Mar temperature 0.1294 May precipitation 0.3558 Feb temperature 0.1353

Mar precipitation 0.5909 Dec temperature 0.1288 Dec temperature 0.3558 Jan temperature 0.1338

Oct temperature 0.5914 Aug temperature 0.1281 Oct precipitation 0.3564 Dec precipitation 0.1006

MAP 0.5920 Mar precipitation 0.1275 Jul precipitation 0.3566 Jan precipitation 0.0702

Aug temperature 0.5922 Apr precipitation 0.1274 May temperature 0.3566 Nov precipitation 0.0601

Oct precipitation 0.5922 Sep temperature 0.1266 Aug temperature 0.3569 Sep precipitation 0.0600

Jun temperature 0.5926 Feb temperature 0.1224 Nov temperature 0.3571 Aug precipitation 0.0575

May precipitation 0.5926 Nov precipitation 0.1177 Mar precipitation 0.3573 Jun precipitation 0.0550

Dec temperature 0.5935 LST 0.1050 Jan temperature 0.3573 Apr precipitation 0.0540

Apr precipitation 0.5937 MAP 0.0994 Sep temperature 0.3577 May precipitation 0.0529

Jul temperature 0.5940 Sep precipitation 0.0976 Feb temperature 0.3579 Feb precipitation 0.0521

May temperature 0.5940 Aug precipitation 0.0967 Oct temperature 0.3581 Mar precipitation 0.0509

Apr temperature 0.5945 Jul precipitation 0.0955 Apr precipitation 0.3582 Jul precipitation 0.0494

Nov temperature 0.5952 Oct precipitation 0.0718 Jun temperature 0.3582 Oct precipitation 0.0431

Jan temperature 0.5955 %Tree cover 0.0717 Feb precipitation 0.3583 LST 0.0385

Nov precipitation 0.5956 May precipitation 0.0674 MAT 0.3584 MAP 0.0379

Sep temperature 0.5968 Jun precipitation 0.0639 MAP 0.3585 LST CV 0.0336

MAT 0.5985 LST CV 0.0069 Jul temperature 0.3588 %Tree cover 0.0134

C3 PACMAD training

gain without variable

C3 PACMAD training

gain with single variable

C3 BEP training gain

without variable

C3 BEP training gain

with single variable

%Tree cover 0.9338 Jan precipitation 0.5277 %Tree cover 0.7290 Jan temperature 0.2038

LST 0.9778 Feb precipitation 0.4956 LST 0.7331 Nov temperature 0.1993

LST CV 0.9882 Dec precipitation 0.4841 Jan precipitation 0.7379 Feb temperature 0.1970

Jun precipitation 1.0004 MAP 0.4734 Sep precipitation 0.7424 Apr temperature 0.1949

Sep precipitation 1.0018 Nov precipitation 0.4651 Dec precipitation 0.7452 May temperature 0.1948

Jan precipitation 1.0025 LST 0.4559 Aug temperature 0.7485 Dec temperature 0.1943

Aug precipitation 1.0046 Oct precipitation 0.4541 Jun precipitation 0.7493 Mar temperature 0.1926

Dec precipitation 1.0072 Mar precipitation 0.4387 LST CV 0.7494 MAT 0.1925

Jul precipitation 1.0090 Apr precipitation 0.4318 Mar precipitation 0.7496 Oct temperature 0.1834

Nov precipitation 1.0120 Sep precipitation 0.4110 Apr precipitation 0.7504 Aug temperature 0.1809

May precipitation 1.0129 Jun precipitation 0.4008 Jun temperature 0.7506 Jun temperature 0.1782

Sep temperature 1.0138 May precipitation 0.3961 MAP 0.7508 Sep temperature 0.1774

Jan temperature 1.0146 %Tree cover 0.3810 Jul precipitation 0.7511 Jul temperature 0.1733

Mar precipitation 1.0153 Jul precipitation 0.3665 Feb precipitation 0.7519 Sep precipitation 0.1282

Oct temperature 1.0160 Aug precipitation 0.3606 Aug precipitation 0.7520 Jul precipitation 0.1258

May temperature 1.0164 May temperature 0.1863 Nov precipitation 0.7523 Aug precipitation 0.1169

Dec temperature 1.0178 Oct temperature 0.1701 Jan temperature 0.7526 Nov precipitation 0.1074
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occurrences in regions of very high precipitation, but

there are also few background pixels (pseudo absences

used in presence-only SDM) from which the Maxent

probability of presence is calculated. C3 PACMADs

occurred in regions with higher % tree cover (sample

mean = 59.4%) and lower LST (sample mean = 22.1 °C)
compared with C3 BEPs, which occurred in more open

regions with less tree cover (sample mean = 41.4%) and

higher LST (sample mean = 24.8 °C).

C3 vs. C4 sister taxa (Oplismenus vs. Echinochloa). Model

performance for both Oplismenus and Echinochloa was

high (training AUC = 0.91 and 0.92, respectively),

reflecting the smaller niche and geographic distribution

Table 1 (continued)

C3 PACMAD training

gain without variable

C3 PACMAD training

gain with single variable

C3 BEP training gain

without variable

C3 BEP training gain

with single variable

Aug temperature 1.0180 LST CV 0.1653 Sep temperature 0.7526 Feb precipitation 0.1073

Oct precipitation 1.0187 Aug temperature 0.1621 MAT 0.7530 Dec precipitation 0.1072

Apr precipitation 1.0188 Jul temperature 0.1596 Dec temperature 0.7532 Apr precipitation 0.0967

Feb temperature 1.0188 Jun temperature 0.1565 May temperature 0.7536 Mar precipitation 0.0916

MAP 1.0194 Mar temperature 0.1525 Apr temperature 0.7541 Jun precipitation 0.0808

Feb precipitation 1.0200 Sep temperature 0.1513 May precipitation 0.7547 MAP 0.0799

Apr temperature 1.0204 Dec temperature 0.1513 Oct precipitation 0.7551 Jan precipitation 0.0792

Nov temperature 1.0214 MAT 0.1496 Oct temperature 0.7554 Oct precipitation 0.0742

Jun temperature 1.0232 Jan temperature 0.1473 Nov temperature 0.7558 May precipitation 0.0716

MAT 1.0236 Feb temperature 0.1452 Feb temperature 0.7565 LST 0.0697

Mar temperature 1.0256 Nov temperature 0.1451 Mar temperature 0.7592 %Tree cover 0.0560

Jul temperature 1.0276 Apr temperature 0.1380 Jul temperature 0.7605 LST CV 0.0547

Oplismenus training

gain without variable

Oplismenus training gain

with single variable

Echinochloa training

gain without variable

Echinochloa training

gain with single

variable

%Tree cover 0.9205 %Tree cover 0.3911 %Tree cover 1.2222 May temperature 0.8690

LST 0.9312 May temperature 0.3893 Jan precipitation 1.2608 Jul temperature 0.8612

LST CV 0.9419 Jun temperature 0.3712 Aug precipitation 1.2809 Dec temperature 0.8537

Jun temperature 0.9561 Dec temperature 0.3695 Jun precipitation 1.2870 Oct temperature 0.8303

Jun precipitation 0.9591 Oct temperature 0.3682 Sep precipitation 1.2876 Sep temperature 0.8292

Sep precipitation 0.9607 Nov temperature 0.3656 Jul temperature 1.2881 Nov temperature 0.8275

Aug precipitation 0.9649 Aug temperature 0.3652 LST 1.2902 MAT 0.8252

Sep temperature 0.9662 Jul temperature 0.3614 Oct temperature 1.2918 Aug temperature 0.8230

Jan precipitation 0.9694 Sep temperature 0.3541 Mar precipitation 1.2944 Mar temperature 0.8192

Mar precipitation 0.9697 MAT 0.3482 LST CV 1.2966 Jun temperature 0.8066

Oct temperature 0.9699 Apr temperature 0.3361 May precipitation 1.2969 Apr temperature 0.8022

May precipitation 0.9715 Feb temperature 0.3329 Nov temperature 1.2977 Feb temperature 0.7882

Jan temperature 0.9753 Mar temperature 0.3302 May temperature 1.2982 Jan temperature 0.7578

Dec precipitation 0.9762 LST 0.3090 Dec temperature 1.2984 Jan precipitation 0.2338

Jul temperature 0.9762 Jan temperature 0.2963 Feb temperature 1.2988 Dec precipitation 0.2311

Apr precipitation 0.9765 LST CV 0.2599 Feb precipitation 1.2990 Sep precipitation 0.2089

Feb temperature 0.9766 Dec precipitation 0.2429 Jan temperature 1.2990 Aug precipitation 0.1899

Jul precipitation 0.9767 Jan precipitation 0.2422 Sep temperature 1.2990 %Tree cover 0.1457

Feb precipitation 0.9770 Nov precipitation 0.2275 Oct precipitation 1.2992 Jul precipitation 0.1425

MAP 0.9772 Oct precipitation 0.2133 Nov precipitation 1.2992 Feb precipitation 0.1224

Oct precipitation 0.9772 MAP 0.1943 Dec precipitation 1.2992 LST CV 0.1150

Nov precipitation 0.9772 Feb precipitation 0.1914 Jun temperature 1.2992 May precipitation 0.1111

Dec temperature 0.9773 Mar precipitation 0.1866 Aug temperature 1.2992 Jun precipitation 0.1025

May temperature 0.9774 Apr precipitation 0.1646 MAP 1.2995 Nov precipitation 0.0916

Mar temperature 0.9776 May precipitation 0.1322 Jul precipitation 1.2995 Mar precipitation 0.0871

Aug temperature 0.9790 Sep precipitation 0.1307 Apr precipitation 1.2996 MAP 0.0712

MAT 0.9796 Jul precipitation 0.1189 Mar temperature 1.2996 LST 0.0689

Apr temperature 0.9796 Jun precipitation 0.1166 Apr temperature 1.2997 Apr precipitation 0.0615

Nov temperature 0.9798 Aug precipitation 0.0975 MAT 1.2999 Oct precipitation 0.0518
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of these genera compared to the larger clades. The most

important variable contributing to the training gain for

Oplismenus was % tree cover, followed by air tempera-

ture variables in no particular month (Table 1). Model

training gain decreased the most when % tree cover

and LST were excluded. In comparison, air temperature

variables by far contributed the most to Echinochloa

training gain (with summer temperatures contributing

slightly more) and decreased the most when % tree

cover was excluded (Table 1).

The modeled probability of presence in response to

MAT increased exponentially with higher temperatures

for both Oplismenus and Echinochloa (Fig. 1j and m);

however, Oplismenus began increasing at lower temper-

atures and reached a peak at a lower temperature

(about 21 °C) compared with Echinochloa (which

peaked at about 23 °C; sample means for Oplismenus

and Echinochloa occurrences were 20.7 °C and 22.3 °C,
respectively). Both genera declined sharply at air tem-

peratures above 23 °C. Oplismenus showed a lower

probability of presence in the driest regions, but

response increased and peaked at about 2700 mm, at

which point there was a gradual decline in probability

of presence (Fig. 1k). In comparison, Echinochloa exhib-

ited a high probability of presence at low MAP values

and quickly declined at MAP values greater than

600 mm (Fig. 1n). There was a large difference in the %

tree cover values of Oplismenus, which occurred in

much more closed habitats (sample mean = 62.0%)

compared with Echinochloa, which occurred in much

more open habitats (sample mean = 31.3%). Relatedly,

Oplismenus occurred in regions of lower LST (sample

mean = 23.2 °C) compared with Echinochloa (sample

mean = 25.9 °C), as would be expected due to the

higher tree cover and transpiration of Oplismenus

environments.

Niche overlap and niche breadth

Niche overlap tests revealed that C4 distributions

overlap slightly more with C3 BEP distributions than

they do with C3 PACMAD distributions (I = 0.86 vs.

0.82 and D = 0.60 vs. 0.56, respectively). This is inter-

esting given that the C3 and C4 PACMAD taxa share

a common evolutionary history compared with C4

and C3 BEP taxa, and instead indicate differences

likely due to photosynthetic pathway. These differ

from the relative rank statistic, which shows that C4

distributions overlap more with C3 PACMAD distri-

butions than with C3 BEPs (0.54 vs. 0.49, respectively).

This is not surprising because the relative rank metric

is sensitive to regions estimated to be of intermediate

suitability for both C3 PACMADs and C4 taxa (War-

ren et al., 2008), and C3 PACMAD taxa occur in lower

elevations geographically closer to C4 taxa in compari-

son with C3 BEP taxa (i.e., geographic space). The I

and D metrics appear more sensitive to the similar

preference of C4 taxa and C3 BEPs for low % tree

cover, warmer LST, and drier regions (i.e., ecological

space), which is also illustrated in the response curve

differences discussed above. As illustrated by the

divergence map between the C3 PACMAD and C3

BEP distributions, C3 BEPs appear to occur in both

warmer and drier leeward regions of islands as well

as very high elevations, where C3 PACMADs have a

low probability of occurrence (Fig. 2). Niche breadth

analysis revealed that C3 PACMADs occupy the

narrowest niche based on the inverse concentration

metric (0.47), whereas C4 taxa have the broadest niche

(0.75), and C3 BEPs were intermediate in niche

breadth (0.60). In contrast, Echinochloa species (C4) had

a narrower niche (0.30) compared with Oplismenus

species (0.42).

MaxEnt vs. crossover temperature model

The simpler but physiologically based crossover

temperature model arguably performs better than the

MaxEnt model of C4 distribution. The greatest number

of C4 occurrences corresponded to those grid cells that

met the C4 climate criteria for 12 months of the year

(and were screened for tree cover <50%), and at least

some occurrences were found in each C4 climate-

months bin (Fig. 3a). In comparison, the greatest num-

ber of C4 occurrences corresponded to intermediate

logistic probabilities of presence (between 0.4 and 0.7)

from MaxEnt output (Fig. 3b). The crossover tempera-

ture model primarily captured abiotic limitations

(although the crossover temperature of 22 °C is based

on relative C3-C4 photosynthetic production), whereas

the MaxEnt model used species localities that resulted

from both abiotic and biotic interactions. Therefore, the

crossover temperature model captured a larger propor-

tion of the land area as suitable and more occurrences

were likely to fall into these regions. Interestingly, the

number of C4 occurrences declined sharply at higher

MaxEnt probabilities of presence (0.8–0.9). One expla-

nation may be that the MaxEnt probability of presence

is dependent upon the total area that is represented by

different environmental conditions (i.e., background

samples). For example, there were a large number of

C4 occurrences in low elevation regions, but these

regions were also a large proportion of the total area

being modeled, therefore, the MaxEnt predicted proba-

bility in these regions will be lower than in regions

where the ratio of occurrences in a particular environ-

ment to the total area of that environmental condition

is higher.
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Discussion

We expected that the predicted environmental niches

and geographic distributions of C3 and C4 grasses

would differ due to the differential temperature sensi-

tivities and resource-use efficiencies shown for each

plant type by many previous studies. As expected, on

average C4 taxa show a preference for regions with

higher temperatures and lower precipitation compared

with C3 taxa in both the BEP and PACMAD clades

(Fig. 1). However, consistent with our hypothesis, we

found considerable differences in the environmental

preferences and niches of C3 BEPs and C3 PACMADs

(Table 1; Figs 1 and 2) and these differences were

obscured when modeling C3 grasses as a whole,

confounding the ecological sorting due to C3 and C4

photosynthetic pathway. Indeed, our comparison

between C3 BEPs and C3 PACMADs, which suggests

many ecological differences unrelated to photosynthetic

pathway, is not unexpected given that the last common

ancestor of these clades lived over ~50 Mya (Vicentini

et al., 2008).

Our results show that C4 (PACMAD) taxa are more

ecologically distinct from C3 PACMADs than from C3

BEPs. The distinction between C4 and C3 PACMADs

highlights differences in resource-use (e.g., light, water,

and nitrogen) associated with photosynthetic pathway

and these differences are supported in the comparison

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

Fig. 1 MaxEnt environmental response curves of probability of presence (solid line; left axis) with all other variables set to their aver-

age value for the occurrence points. Sample frequency (boxes; right axis) showing the number of occurrences along environmental gra-

dients. The high probability of presence of C3 PACMADs and BEPs in regions with very high precipitation (above 6000 mm yr�1) is

likely the result of few background pixels (i.e., small land area) representing those environmental conditions – there are few samples

occurrences in regions of very high precipitation, but there are also few background pixels from which the MaxEnt probability of

presence is calculated.

Fig. 2 Divergence map showing regions of similarity and dif-

ference between C3 PACMAD and C3 BEP grass distributions

(C3 PACMAD model – C3 BEP model) on the Hawaiian Islands

based on MaxEnt models including elevation. Although we

report results with and without elevation when evaluating

variable importance (see Methods), the inclusion of elevation

resulted in slightly better models based on AUC, and thus we

include it for mapping purposes only. Positive values indicate

greater PACMAD probability of presence, negative values indi-

cate greater BEP probability of presence, and the light tan color

indicates regions of similar probabilities. Inset (upper right)

showing mean annual precipitation across islands with wettest

regions in white and driest regions in black.
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among closely related C3-C4 sister taxa. Precipitation, in

particular winter precipitation, was found to be more

important for understanding the distribution of C3

PACMADs in comparison to C3 BEPs and C4 taxa, for

which temperature variables were much more

important (Table 1). Because of the differences in the

BEP and PACMAD clades, the importance of winter

precipitation over temperature variables was muted in

the jackknife results when modeling all C3 grasses as a

group, although winter precipitation still ranked as

slightly more important than summer precipitation,

and this is supported by previous work examining

C3-C4 phenology (Paruelo & Lauenroth, 1996; Tieszen

et al., 1997; Davidson & Csillag, 2003; von Fischer et al.,

2008).

Consistent with results by Edwards & Still (2008) and

Edwards & Smith (2010), air temperature differences

were smaller (2 °C vs. 4 °C) and precipitation and %

tree cover differences were larger (1783 mm vs.

755 mm, 21.3% vs. 7.7%, respectively) when comparing

C3 and C4 grasses within a phylogenetic context (i.e.,

within the same PACMAD clade vs. all C3). These

results are relevant for studies of grassland response to

future global change because they suggest that the

distribution and abundance of C4 grasses should be

more sensitive to differences in precipitation and

associated changes in tree cover, whereas the sensitiv-

ity to air temperature attributed to photosynthetic

pathway may not be as large as previously thought.

The niche partitioning among C3 PACMADs, C3

BEPs, and C4 taxa highlights the interactions among

temperature, water availability, and tree cover in

controlling their distributions. Our results clearly show

that C3 PACMADs prefer mid-elevation, closed canopy

regions where there is greater precipitation but air

temperatures are also warmer; in comparison, high-ele-

vation regions where C3 BEPs are more likely to occur

are cold, dry, and open habitats. Thus, even in dry

environments where C4 species are thought have a

competitive advantage due to their higher water-use

(a)

(b)

Fig. 3 Frequency of C4 grass occurrences in pixels that met the temperature crossover criteria (a) and across the MaxEnt probabilities

of occurrence for a C4 model (b) in the Hawaiian Islands. Number of months that met the C4 temperature crossover criteria in mean

monthly climate layers were summed (mean monthly temperature greater than or equal to 22 °C and mean monthly precipitation

greater than or equal to 25 mm in that same month) for each pixel (pixels with> 50% tree cover were excluded).
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efficiency (Ehleringer & Monson, 1993), temperature

limitations inherent to the tropical origins of C4 taxa

may exclude these grasses at high elevation sites where

C3 BEPs exist.

Results comparing closely related C3-C4 sister taxa

(in the PACMAD clade), Oplismenus and Echinochloa,

support the patterns derived from our modeling of the

larger clade groupings. Both taxa had lower elevational

distributions resulting in higher probabilities of pres-

ence in drier regions compared with C3 PACMADs as a

whole; however, the temperature response profiles

were similar to the larger clade responses (Fig. 1). It is

noteworthy that the sister taxa comparison emphasized

large differences in the light preferences of C3

compared with C4 grasses. Oplismenus preferred

regions with greater tree cover, lower light levels, and

also cooler air temperatures in contrast with Echino-

chloa, which preferred open habitats with lower tree

cover and higher air temperature. These findings are

consistent with the advantages typically conferred by

the C4 pathway in high light and high temperature

environments and also agree well with Edwards &

Smith (2010) and Osborne and Freckleton (2009) who

showed that C3 PACMAD taxa are preferentially

growing in shady habitats associated with high tree

cover compared with closely related C4 sister taxa,

which occur in drier and more open habitats.

Response curves, sample histograms, a higher AUC

value, and the niche breadth analysis together show

that C3 PACMADs have a narrower environmental

niche compared with C3 BEPs and C4 taxa. If organisms

with a narrow niche breadth and smaller geographic

range are most threatened by increases in temperature

(Urban et al., 2012), then C3 PACMADs are most likely

to be impacted by climate change. On the other hand,

C3 BEPs may be at risk because temperatures on

Hawaii at higher elevations are increasing more rapidly

compared with lower elevations due to an increase in

minimum temperatures and a compression of the diur-

nal temperature range (Giambelluca et al., 2008).

Furthermore C3 BEPs were most sensitive to tempera-

ture as shown by jackknife results. Although C3 BEPs

generally occurred in colder air temperature environ-

ments compared with C3 PACMADs, both showed

clear declines in predicted probability of presence at air

temperatures above 21 °C. In this regard, both groups

are distinct from C4 taxa, which showed a modeled

increase in presence with increasing air temperature.

Recent experimental work has demonstrated that the

invasion success of a C4 grass can be enhanced by

increasing temperature and aridity (Chuine et al., 2012),

suggesting that the invasion of C4 grasses on Hawaii

may be accelerated with increasing temperature and

aridity throughout the islands. Our results suggest that

the success of invasive C4 grasses on Hawaii may bene-

fit from distinct physiological advantages over C3 PAC-

MAD compared with C3 BEP grasses, even in the face

of increasing CO2, which should favor C3 grasses

through CO2 fertilization. It has, however, been

suggested that C4 plants may be less phenotypically

plastic compared with C3 plants and thus may be less

capable of acclimating to environmental change (Sage

& McKown, 2006). Our comparisons of Oplismenus and

Echinochloa indicate that C4 grasses may have a nar-

rower niche, in contrast with the larger clade group-

ings, and thus may be less capable of responding to

climate change by shifting in space or time. Future

work investigating the niche diversity both within and

across clades could begin to answer key questions

regarding the rate of change in niche evolution and

how much genetic variation is present within species

and clades for adaptation to changing climate (Holt,

2009).

Although using SDMs to understand the environ-

mental niche of clades can provide novel information

on the evolutionary bounds of functional traits and

related ecological processes, careful interpretation of

results is warranted when there is not a balanced

representation of each species in a clade. When using

herbaria collections, widely collected species poten-

tially overrepresent the environmental preferences of

the entire clade. However, widely collected herbaria

specimens can indicate ecological abundance (C. Imada,

personal communication – see Methods). Thus, when

considering the aggregate niche of a clade, dominant

species represent a larger proportion of the niche space

occupied by the clade. Furthermore, evenly sampling

across all species limits the number of occurrences that

can be used in the models. However, we further

examined the niche of each group (C3 BEP, C3

PACMAD, and C4 PACMAD) by randomly subsam-

pling an even number of occurrences from each species

in the group, and in our case model results were similar

(see Supporting Information for details).

Finally, to our knowledge, this is the first niche/SDM

approach that has compared air temperature and LST.

Such datasets have only recently become available for

an extended period (the MODIS LST record is now over

a decade long). Our results highlight the ecological rele-

vance of LST in explaining biotic distributions. LST was

an especially important predictor for C3 PACMADs,

ranking much higher than any of the air temperature

measures (Table 1). LST is likely a more relevant

biological quantity than air temperature for many

scientific questions, as it is the actual temperature of

the object or surface of interest (often referred to as the

‘skin temperature’). Because any organism’s thermody-

namic temperature can frequently deviate from air
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temperature, it is of equal or greater importance to

measure skin temperature. As many biological

processes (such as respiration rates) and ecologically

important environmental attributes (such as vapor

pressure deficit, which is critical for estimating evapo-

transpiration and its influence on species distributions),

are nonlinearly dependent on temperature, substantial

errors can be introduced when using air temperature in

place of the skin temperature. Satellite-derived mea-

sures of skin temperature are also strongly related to

the hydroclimatology of the land surface (Anderson

et al., 2007; Karneili et al., 2010). LST should be tightly

correlated with % tree cover and MAP as these

variables are strongly related through transpirational

cooling (Mildrexler et al., 2006). For all taxa, LST and %

tree cover consistently ranked high in decreasing model

performance when these variables were excluded, dem-

onstrating the unique information contained in these

variables. Importantly, the difference in LST was larger

when comparing C3 PACMAD with C4 grasses than

when comparing all C3 grasses with C4 grasses (3.7 °C
vs. 1.6 °C) unlike air temperature differences, which

were smaller. This is possibly explained by the drier,

sunnier and more open conditions of C3 BEPs, which

would result in higher LST values than C3 PACMADs.
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